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Experiment

Helicity Dissipation Remains a Major Uncertainty in Projecting LHI Performance

LHI makes High-𝑰𝒑 Tokamak Plasmas via Edge Current Injection

• Helicity Balance: To drive 𝐼!, helicity must be injected faster than it is dissipated

Effective loop voltage: 𝑉!"# = ⁄𝑉$%&𝐴$%&𝐵',$%& Ψ' 𝑰𝒑 Limit: 𝐼* ≤ ⁄𝑉!"# + 𝑉#+, 𝑅*

• Taylor Relaxation: System driven to minimum energy state that conserves helicity
Taylor/relaxed state: Flat λ 𝑟 ≡ ⁄𝜇-𝐽 2 𝐵 𝐵. → In LHI, 𝜆̅* ≤ 𝜆̅$%&

Taylor Limit [1]: 𝐼/ ≤ 𝐼'! ≈ 𝑓0
12!#"#$#%&
.34'()'5"#$
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Global limits insufficient for determining 𝑰𝒑 𝒕 → Require predictive models for 
projecting LHI to MA-class tokamak startup

Incorporating Global Confinement Scalings into 
0-D Power Balance Model

• High-𝐼! LHI scenarios in PEGASUS-III leverage dynamic shape 
evolution and significant inductive drive (𝑉#$%) [2]
o Not described by steady-state model

• Extended 0-D power balance model to incorporate global 
confinement scalings into dynamic 𝐼!(𝑡) predictions

• Recast into coupled set of 1st order, non-linear ODEs
o Solve for 𝐼*(𝑡) and 𝑇8(𝑡) while enforcing Taylor Limit

• Successfully benchmarked against steady-state model

• Assumed 𝑃&'( strongly impacts LOC 𝐼!(𝑡) projections
o Lower 𝐵': Need 𝑃9:; to reach previously projected 𝐼*
o Higher 𝐵': Improved confinement à higher 𝐼* projected

PEGASUS-III will Validate LHI Predictive Tools
• Experiments will characterize helicity dissipation scaling

o Reduce uncertainty in 0-D model to enable 𝐼*(𝑡) predictions

• Steady-state 𝐼! projections motivate 𝐵) and 𝑛* scans
o Assess if global confinement scalings are descriptive of LHI
o Distinguish between competing confinement scalings

• Incorporated 𝜏+ scalings into 0-D power balance model
o Provides self-consistent 𝑇8(𝑡) via global confinement scalings

𝑰𝒑 Trend w/
Confinement Scaling 

Estimates
Increasing 

𝑩𝑻
Increasing 

𝒏𝒆
Increasing 
𝑽𝑵𝑶𝑹𝑴

LOC ↑ ⎯ ↑
SOC ⎯ ↑ ↓

Collisional stochastic ⎯ ⎯ ↑
Collisionless stochastic ↑ ↑ ↓

Steady-State 𝑰𝒑 Projections Motivate PEGASUS-III Confinement Scaling Experiments

Assessing LHI Performance via Tokamak Global Confinement Scalings

Poynting’s theorem: 𝐼( 𝑉)*+ + 𝑉,-) − 𝑉). = 0

NEW Global power balance:
𝑑(𝑊/ +𝑊0)

𝑑𝑡 = 𝑃12 − 𝑃345 −
𝑊0
𝜏6

Taylor Limit: 𝐼( ≤ 𝐼7,

• Estimate 𝑇8 from global power balance [3]

• Assume 𝜏< from various confinement models

• Requires reconnection 𝑃9:; ∝ 𝐼$%&𝑉$%&
⁄7 .

• LOC: No free parameters
• Stochastic: Normalized to data
• Data unable to distinguish models

Higher 𝑩𝑻 Enables Critical Tests to Advance LHI on PEGASUS-III

Mission: Compare, contrast, and synergistically combine power-plant relevant 
solenoid-free startup techniques to solve the tokamak startup challenge1,2

• PEGASUS-III startup systems:
o Local Helicity Injection (LHI)3
o Coaxial Helicity Injection (CHI)4,5
o Radio-frequency (RF) heating and CD6

• LHI physics tested at higher 𝐵) ≤ 0.6 T
o Improve extrapolation to higher 𝐵' facilities
o Demonstrate improved performance: 𝐼* ≥ 0.3 𝑀𝐴
o Characterize dissipation and confinement scaling
o Test current drive models7
o Coupling to RF heating and CD6
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1M.W. Bongard et al., CP11.00040
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4R. Raman et al., CP11.00053
5J.A. Reusch et al., CP11.00044
6J.K. Peery et al., CP11.00042
7R. Sassella et al., CP11.00048

No model for LHI confinement currently exists

Global power balance
𝑑(𝑊/ +𝑊0)

𝑑𝑡
= 𝑃12 − 𝑃345 −

𝑊0
𝜏6

𝑃12 − 𝑃345 =
8!
9"

Steady-state

⁄𝑑 𝑑𝑡 = 0

Confinement Type Regime 𝝉𝑬 Scaling
Standard Ohmic 

Tokamak
LOC 𝜏62;<=> [6]
SOC 𝜏6)76.?@,AB [7]

RR stochastic [8]
(𝜏6 ∼ ⁄𝑎C 𝜒;)

Collisional ~ 4#

D$%,'#9()* ⁄FG+ G, # *

Collisionless ~ 4#

D$%,',( ⁄FG+ G, # *

*Assume FG+
G,
~ 9-

9.

=H
, 𝛼 = 0.07,0.18 from work on MST [9]

Summary of predicted qualitative 𝑰𝒑 trends for various 
confinement scalings

Steady-state confinement model used to predict PEGASUS-III 𝑰𝒑 scaling trends
• Calculations assume reference low-𝐴 PEGASUS-III plasma

o 𝐴 = 1.2, 𝑅I = 0.4 m, 𝜅 = 2,𝑚2;< = 2.4, 𝑍;JJ = 1, 𝐹.>+ = 10%, 𝑃4KL = 0.3 MW and ⁄𝑇1 𝑇; = 2
o Stochastic model only provides relative scaling, not absolute 𝐼( predictions à compare qualitative trends

• Varied 𝐵', 𝑛8 , and 𝑉+=4>: Experimentally accessible and discernable

Energy confinement determines 𝑻𝒆(𝑹)

LHI likely lies between these extremes
• Observe peaked 𝑇8(𝑅) and 𝑃8(𝑅) [3]

o Comparable to ohmic discharges

• Reconnection and 3D 𝐵 → stochasticity
o Reconnection evidence: NIMROD modeling [4] 

and observed anomalous ion heating [5]
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•Unique combination of expected trends for each model
o Can experimentally discern between models

• PEGASUS-III will test these models via 𝐵) and 𝑛* scans

Extended 0-D power balance model governing equations

Model robustly recreates steady-state LOC solution

Assumed model 𝜼𝒑 varied via 𝑻𝒆 to best match 
measured 𝑰𝒑(𝒕) on PEGASUS [2]

Projected PEGASUS-III 𝑰𝒑 increases with 𝑩𝑻 and 
varies strongly with assumed 𝑻𝒆

Comparing previous PEGASUS-III projections with new extended model 
assuming LOC scaling and different levels of 𝑷𝒂𝒖𝒙

0-D Power Balance Model Developed to Predict 𝑰𝒑(𝒕)

• Circuit model derived from Poynting’s theorem [2]
o Balances input drive with stored magnetic energy and resistive dissipation
o Inductive effects quantified with analytic, finite-𝐴 formulae
o Solve 1st order ODE for 𝐼* 𝑡 while enforcing Taylor limit: 𝐼*(𝑡) ≤ 𝐼'!(𝑡)
o Time-varying inputs: Plasma shape, injector parameters, 𝛽*, ℓ$, 𝐼'?, assumed 𝜂*

References: [1] D.J. Battaglia, et al. Nucl. Fusion 51 073029 (2011); [2] J.L. Barr, et al. Nucl. Fusion 58, 076011 (2018); [3] G.M. Bodner et al., Phys. Plasmas 28, (2021); [4] J.B. O’Bryan and C.R. Sovinec, Plasma Phys. Control. Fusion 56 064005 (2014)
[5] M.G. Burke et al., Nucl. Fusion 57, (2017); [6] R. J. Goldston, Plasma Phys. Control. Fusion 26, (1984); [7] S.M. Kaye et al., Nucl. Fusion 37, (1997); [8] B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, (1978); [9] M. R. Stoneking et al., Phys. Plasmas 5, (1998)

• Presently, dissipation treated resistively
o 𝜂* ∝ 𝑍8@@𝑚%8A𝑇8

⁄BC .

• 𝜂! adjusted to match experimental 𝐼!(𝑡)
o Assume constant 𝜂* , 𝑍8@@𝑚%8A ≈ 3
o In PEGASUS, 𝑇8 = 60 − 90 eV at 𝐵' ≤ 0.15 T
• Consistent with Thomson Scattering 𝑇;(𝑅) [2]

• Uncertainty in 𝜂! yields range of projected 𝐼!(𝑡)
o Varies strongly with assumed 𝑇8

• Favorable implications for PEGASUS-III at higher 𝐵)
o Increased 𝐼'! via 𝐵' → 𝐼* increases

o If higher 𝐵' increases 𝑇8 → 𝐼* significantly increased Reliable 𝑰𝒑(𝒕) projections require a model to scale helicity dissipation
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Poloidal Field Induction
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Inductive Drive from 
Shape Evolution
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Normalization pt.

𝑰𝒑 = 0.2 MA LHI Plasma (𝑰𝒊𝒏𝒋 ≤ 8 kA)

𝐼( ≳ 𝑁AK32Y 𝐼12S𝐼( ~ 𝑁AK32Y 𝐼12S 𝐼( ≫ 𝑁AK32Y 𝐼12S

Current Injection Relaxation Driven Tokamak

𝑓0 ≡ geometric factor
1 ≲ 𝑓0 ≲ 3

Confinement Scaling Projections for Local Helicity Injection
Plasma Startup on PEGASUS-III
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