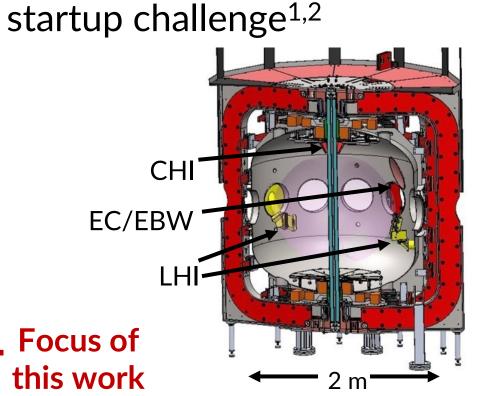
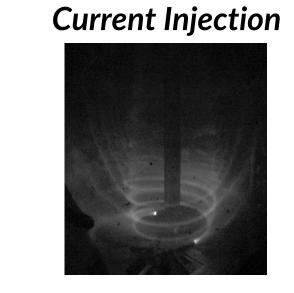


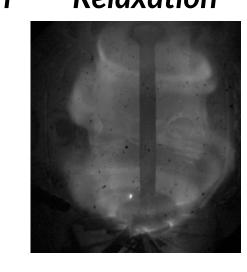
Confinement Scaling Projections for Local Helicity Injection Plasma Startup on PEGASUS-III

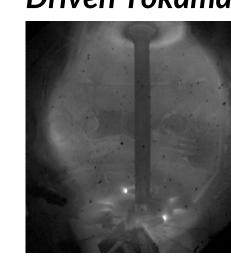

Department of Engineering Physics

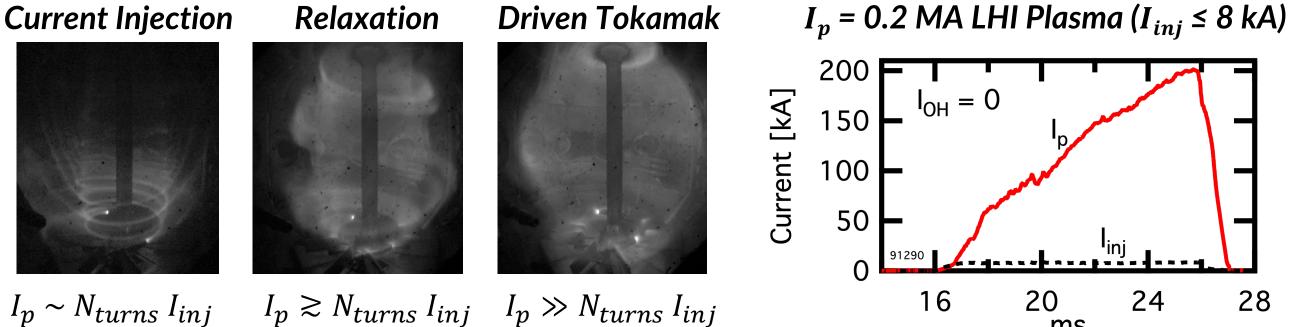
J.D. Weberski, M.W. Bongard, S.J. Diem, R.J. Fonck, J.A. Goetz, M.D. Nornberg, J.A. Reusch, A.T. Rhodes, A.C. Sontag 64th Annual Meeting of the APS Division of Plasma Physics, Spokane, WA, Presentation CP11.00049, 17 October 2022 Work supported by US DOE Grants DE-SC0019008 and DE-SC0020402

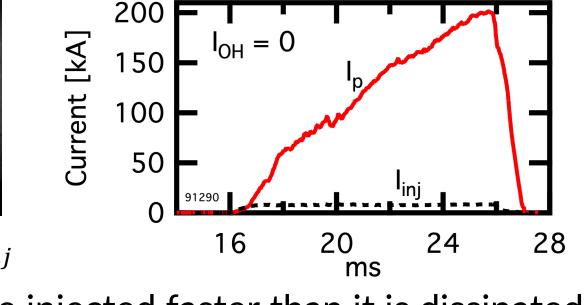
Higher B_T Enables Critical Tests to Advance LHI on PEGASUS-III

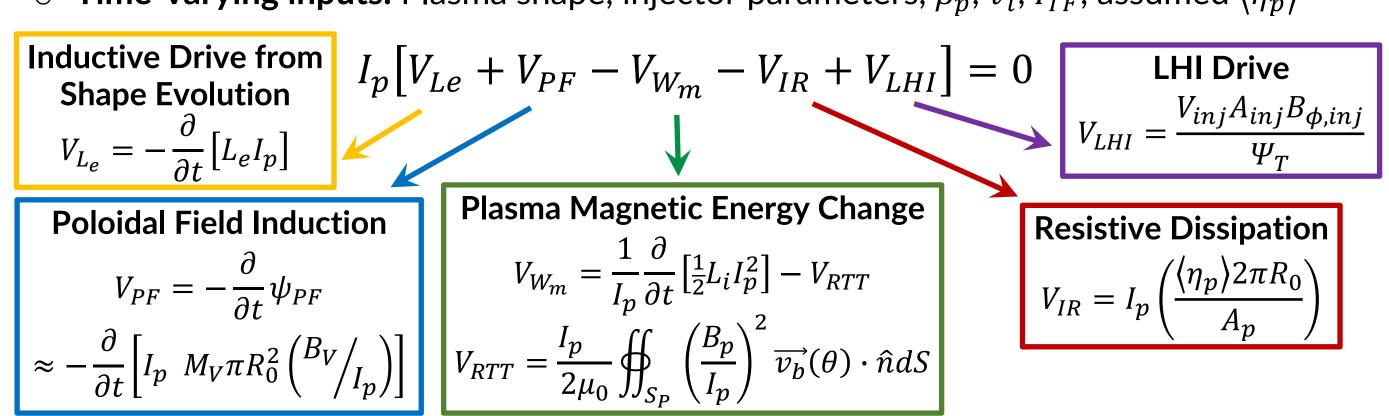

Mission: Compare, contrast, and synergistically combine power-plant relevant solenoid-free startup techniques to solve the tokamak startup challenge^{1,2}


- PEGASUS-III startup systems:
- Local Helicity Injection (LHI)³ Coaxial Helicity Injection (CHI)^{4,5}
- Radio-frequency (RF) heating and CD⁶
- LHI physics tested at higher $B_T \leq 0.6 \text{ T}$
- \circ Improve extrapolation to higher B_T facilities
- Demonstrate improved performance: $I_p \ge 0.3 MA$ Characterize dissipation and confinement scaling
- Test current drive models⁷
- Coupling to RF heating and CD⁶



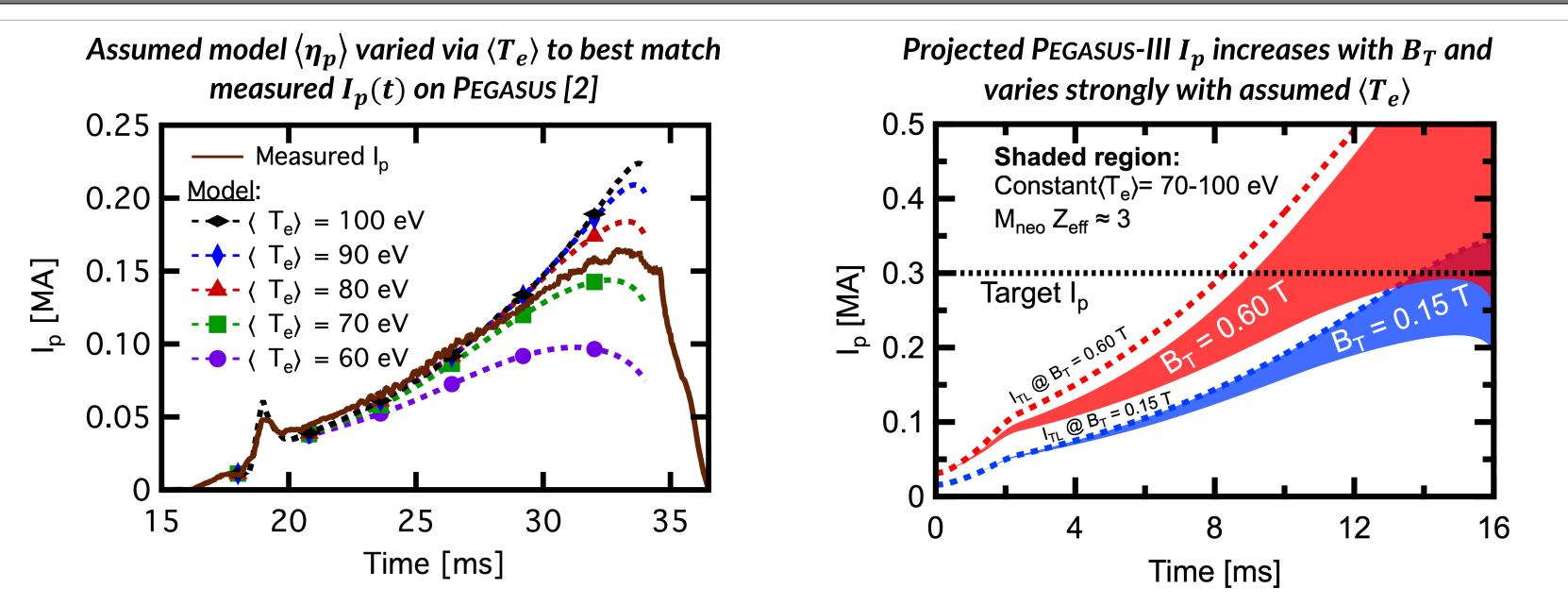

¹M.W. Bongard et al., CP11.0004


LHI makes High- I_n Tokamak Plasmas via Edge Current Injection


- Helicity Balance: To drive I_p , helicity must be injected faster than it is dissipated Effective loop voltage: $V_{LHI} = V_{inj} A_{inj} B_{T,inj} / \Psi_T$ I_p Limit: $I_p \leq (V_{LHI} + V_{IND}) / R_p$
- Taylor Relaxation: System driven to minimum energy state that conserves helicity **Taylor/relaxed state:** Flat $\lambda(r) \equiv \mu_0 \vec{J} \cdot \vec{B}/B^2 \rightarrow \text{In LHI}, \bar{\lambda}_p \leq \bar{\lambda}_{ini}$

Taylor Limit [1]: $I_P \le I_{TL} \approx f_g \left[\frac{\varepsilon A_p I_{inj} I_{TF}}{2\pi R_{edge} w_{inj}} \right]^{1/2} f_g \equiv \text{geometric factor}$ $1 \le f_g \le 3$

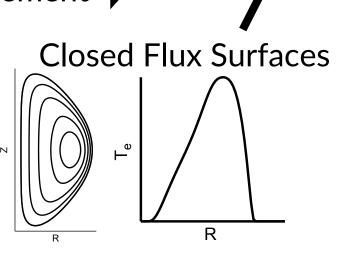
Global limits insufficient for determining $I_p(t) \to \text{Require predictive models for}$ projecting LHI to MA-class tokamak startup


0-D Power Balance Model Developed to Predict $I_p(t)$

- Circuit model derived from Poynting's theorem [2]
- Balances input drive with stored magnetic energy and resistive dissipation
- Inductive effects quantified with analytic, finite-A formulae
- Solve 1st order ODE for $I_p(t)$ while enforcing Taylor limit: $I_p(t) \le I_{TL}(t)$
- \circ Time-varying inputs: Plasma shape, injector parameters, β_p , ℓ_i , I_{TF} , assumed $\langle \eta_p \rangle$

Helicity Dissipation Remains a Major Uncertainty in Projecting LHI Performance

- Presently, dissipation treated resistively
- $\circ \quad \langle \eta_p \rangle \propto Z_{eff} m_{neo} T_e^{-3/2}$
- $\langle \eta_p \rangle$ adjusted to match experimental $I_p(t)$
- Assume constant $\langle \eta_p \rangle$, $Z_{eff} m_{neo} \approx 3$
- In PEGASUS, $\langle T_e \rangle = 60 90$ eV at $B_T \leq 0.15$ T • Consistent with Thomson Scattering $T_e(R)$ [2]
- Uncertainty in $\langle \eta_p \rangle$ yields range of projected $I_p(t)$
- \circ Varies strongly with assumed $\langle T_e \rangle$
- Favorable implications for PEGASUS-III at higher B_T Increased I_{TL} via $B_T \rightarrow I_p$ increases
- o If higher B_T increases $\langle T_e \rangle \to I_p$ significantly increased

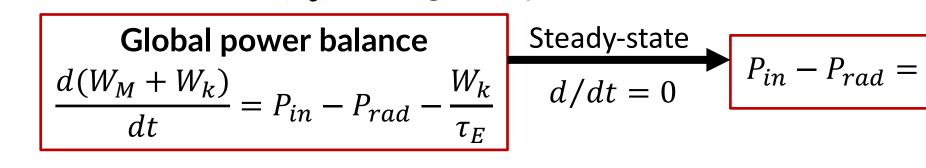


Reliable $I_p(t)$ projections require a model to scale helicity dissipation

Assessing LHI Performance via Tokamak Global Confinement Scalings

Energy confinement determines $T_e(R)$ Decreasing Transport -

Improving Confinement → Globally Stochastic \vec{B}

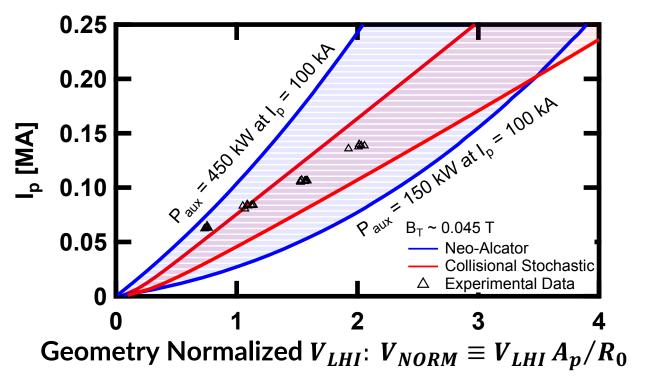


LHI likely lies between these extremes

- Observe peaked $T_e(R)$ and $P_e(R)$ [3]
- Comparable to ohmic discharges
- Reconnection and 3D $\vec{B} \rightarrow$ stochasticity
- Reconnection evidence: NIMROD modeling [4] and observed anomalous ion heating [5]

No model for LHI confinement currently exists

• Estimate $\langle T_e \rangle$ from global power balance [3]



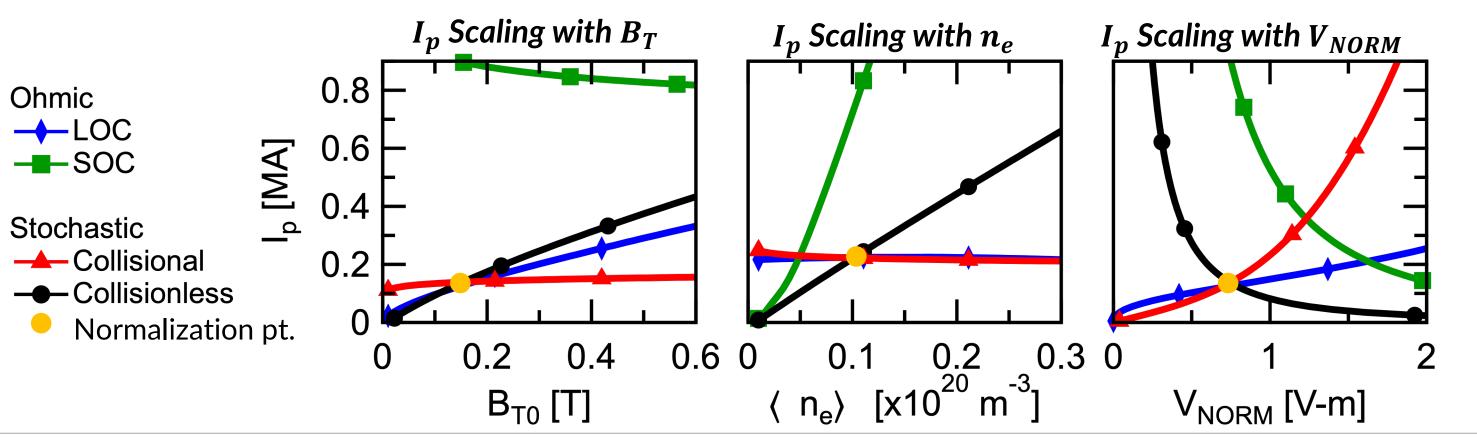
• Assume τ_E from various confinement models

Confinement Type	Regime	$ au_E$ Scaling
Standard Ohmic Tokamak	LOC	$ au_E^{neo-A}$ [6]
	SOC	$ au_E^{ITER97Lth}$ [7]
RR stochastic [8] $(\tau_E \sim a^2/\chi_e)$	Collisional	$\sim \frac{a^2}{v_{th,e}^2 \tau_{col} (\delta B_r/B_T)^2} *$
	Collisionless	$\sim \frac{a^2}{v_{th,e}L_c(\delta B_r/B_T)^2} *$

*Assume $\frac{\delta B_r}{B_m} \sim \left(\frac{\tau_R}{\tau_A}\right)^{-\alpha}$, $\alpha = [0.07, 0.18]$ from work on MST [9]

PEGASUS data consistent with LOC and collisional stochastic scalings [3]

• Requires reconnection $P_{aux} \propto I_{inj} V_{inj}^{1/2}$


 I_n Trend w/

- LOC: No free parameters
- Stochastic: Normalized to data
- Data unable to distinguish models

Steady-State I_p Projections Motivate PEGASUS-III Confinement Scaling Experiments

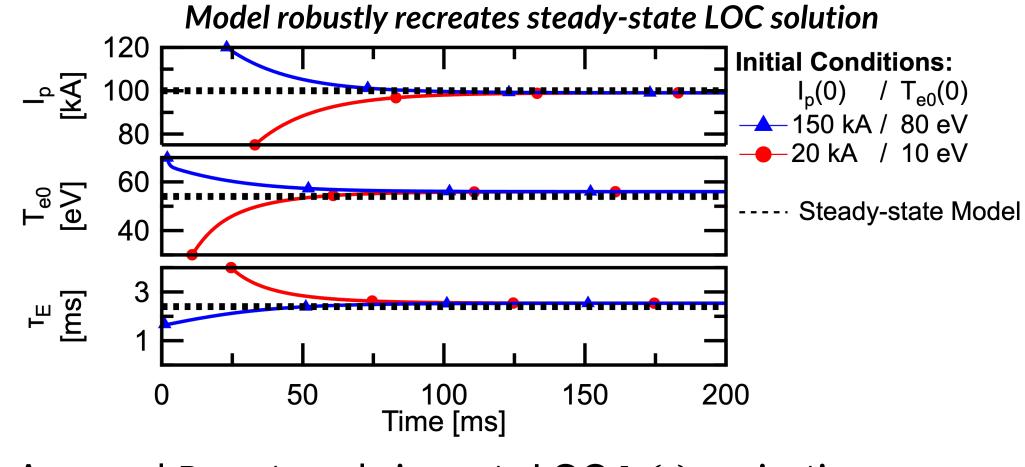
Steady-state confinement model used to predict PEGASUS-III I_p scaling trends

- Calculations assume reference low-A PEGASUS-III plasma
- o A = 1.2, $R_0 = 0.4$ m, $\kappa = 2$, $m_{neo} = 2.4$, $Z_{eff} = 1$, $F_{RAD} = 10\%$, $P_{aux} = 0.3$ MW and $T_i/T_e = 2$
- Stochastic model only provides relative scaling, not absolute I_n predictions \rightarrow compare qualitative trends
- Varied B_T , $\langle n_e \rangle$, and V_{NORM} : Experimentally accessible and discernable

Summary of predicted qualitative I_p trends for various confinement scalings

		<u> </u>	
Confinement Scaling Estimates	Increasing B_T	Increasing n_e	Increasing V_{NORM}
LOC	↑	_	↑
SOC		1	1
Collisional stochastic		_	↑
Collisionless stochastic	1	1	1

- Unique combination of expected trends for each model Can experimentally discern between models
- PEGASUS-III will test these models via B_T and n_ρ scans


Incorporating Global Confinement Scalings into 0-D Power Balance Model

- High- I_p LHI scenarios in PEGASUS-III leverage dynamic shape evolution and significant inductive drive (V_{IND}) [2]
- Not described by steady-state model
- Extended 0-D power balance model to incorporate global confinement scalings into dynamic $I_p(t)$ predictions

Extended 0-D power balance model governing equations

	Poynting's theorem:		
IEW	Global power balance:	$\frac{d(W_M + W_k)}{dt} = P_{in} - P_{rad} - \frac{W_k}{\tau_E}$	
	Taylor Limit:	$I_p \leq I_{TL}$	
_			

- Recast into coupled set of 1st order, non-linear ODEs • Solve for $I_p(t)$ and $T_e(t)$ while enforcing Taylor Limit
- Successfully benchmarked against steady-state model

- Assumed P_{aux} strongly impacts LOC $I_p(t)$ projections
- o Lower B_T : Need P_{aux} to reach previously projected I_p
- Higher B_T : Improved confinement \rightarrow higher I_p projected

Comparing previous PEGASUS-III projections with new extended model assuming LOC scaling and different levels of P_{aux}

PEGASUS-III will Validate LHI Predictive Tools

- Experiments will characterize helicity dissipation scaling • Reduce uncertainty in 0-D model to enable $I_p(t)$ predictions
- Steady-state I_p projections motivate B_T and n_e scans
- Assess if global confinement scalings are descriptive of LHI
- Distinguish between competing confinement scalings
- Incorporated τ_E scalings into 0-D power balance model \circ Provides self-consistent $T_e(t)$ via global confinement scalings