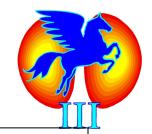


# Investigating The Role of Impurities in Plasma Startup Via LHI on PEGASUS-III

#### C. Rodriguez Sanchez


S.J. Diem, R.J. Fonck, M.D. Nornberg, G.R. Winz

64<sup>th</sup> Annual Meeting of the APS Division of Plasma Physics, Spokane, WA Presentation CP11.00050 17 October 2022





#### Poster Layout



#### 12:1 scale Panel size: 8' x 4'

US Legal 8.5 x 14"

US Letter 8.5 x 11"

Tokamak Startup Via Local Helicity Injection

> PEGASUS-III: A Dedicated Non-Solenoidal Startup Experiment at low A

Predicting LHI Performance Needs Impurity Assessment

Local Helicity Injection (LHI) is a Promising Non-Solenoidal Startup Technique

Current Drive With LHI is Limited by Resistive Dissipation

Investigating The Role of Impurities in Plasma Startup Via LHI on PEGASUS-III

#### **Diagnostic Development**

Impurity Content Can be Characterized by Looking at Different Parts of EM Spectrum

Impurity Species Monitored With VUV Spectroscopy

New AXUV Diagnostic Allows High Spatial and Temporal Resolution Measurements of  $P_{rad}$ 

Upgrades to VB Diagnostic Increase Throughput Impurity Studies will Utilize Multiple Diagnostics

VUV Spectra Suggest Increased Impurity Influx During LHI

Clear Differences in  $P_{rad}$  are Observed Between Ohmic and LHI and Between Different  $B_T$  Levels

Observed  $I_p$  Trends Motivate Measurements of  $Z_{eff}$ 

Impurity Transport Modeling

Transport Code STRAHL is Used for Impurity Studies

Initial Analysis With STRAHL for an LHI Discharge

Reduced Impurity Transport Affects Charge-state Balance and Radiation Profile

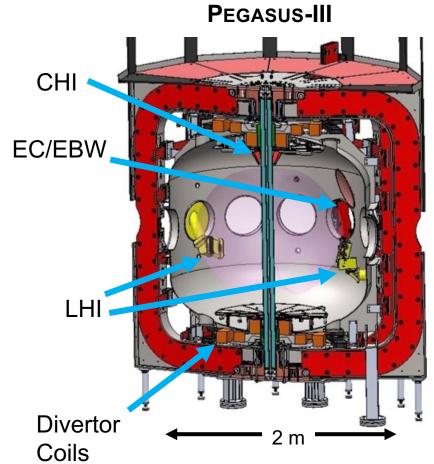
Strong Impurity
Transport May Explain
Observed  $T_e$  Profiles

Impurity Assessment on Pegasus-III

LHI Impurity Sourcing, Concentrations and Effects on LHI Performance Will be Explored in PEGASUS-III

Experiments will Investigate Impact of Impurity Transport in LHI Startup and Power Balance

Influence of Impurities on HI Tokamak Startup will be Studied in PEGASUS-III




### Tokamak Startup Via Local Helicity Injection

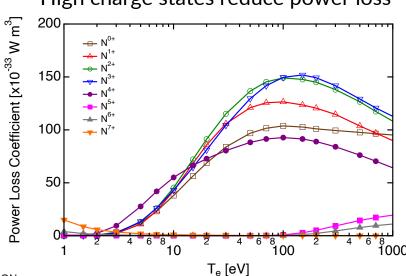
# PEGASUS-III: A Dedicated Non-Solenoidal Startup Experiment at low A

- Future power plants benefit from solenoid-free operations
  - Cost reduction
  - Increased space for shielding and blanket
  - Simplified design
- The new PEGASUS-III facility is a major upgrade to the PEGASUS ST
  - Removal of the Ohmic solenoid
  - Upgraded TF magnet assembly to deliver up to 0.6 T on axis
  - Mission: compare, contrast and combine startup techniques
    - Helicity Injection (LHI and CHI)
    - RF heating and current drive (EBW, EC)
- Impurity roles in plasma startup
  - Power balance
  - Limit current drive:  $I_p \sim V/R$





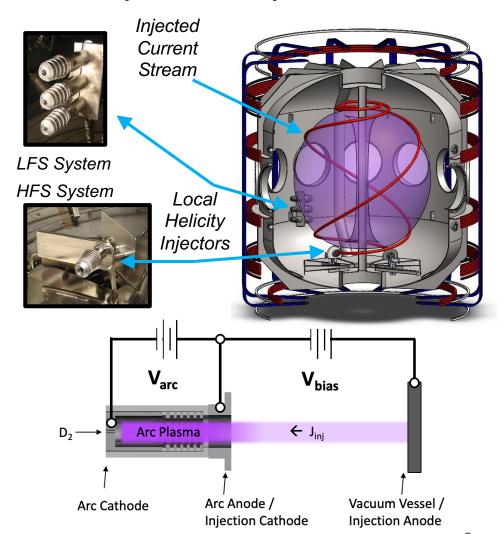
#### Predicting LHI Performance Needs Impurity Assessment

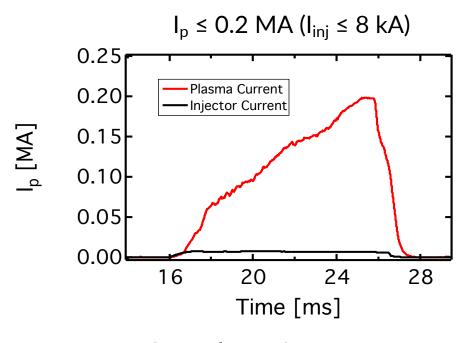

Helicity input balanced by resistive dissipation

$$\dot{K}_{dis} \approx -\frac{2\pi R_0}{A_p} \langle \eta \rangle I_p \Psi$$
  $\eta \propto Z_{eff} T_e^{-3/2}$ 

- Impurity concentration directly affects resistivity
  - Increased  $Z_{eff}$
  - Plasma cooling
- LHI is useful if its target can couple to other CD
  - Acceptably low  $Z_{eff}$
  - Power losses do not impact the power balance




High charge states reduce power loss






### Local Helicity Injection (LHI) is a Promising Non-Solenoidal Startup Technique







- LHI provides solenoid-free startup
  - Edge current extracted from injectors at boundary
  - Relaxation to tokamak-like state via helicity-conserving instabilities
- Used routinely for startup on PEGASUS



#### Current Drive With LHI is Limited by Resistive Dissipation



$$K = \int \vec{A} \cdot \vec{B} \ dV$$



$$\frac{dK}{dt} = -2 \frac{\partial \psi}{\partial t} \Psi - 2 \int \phi \vec{B} \cdot \hat{n} \, dS - 2 \int \eta \vec{J} \cdot \vec{B} \, dV$$

AC Helicity Injection:

$$\dot{K}_{AC} = -2 \frac{\partial \psi}{\partial t} \Psi = 2 V_{\text{loop}} \Psi$$

DC Helicity injection:

$$\dot{K}_{DC} = -2 \int \phi \vec{B} \cdot \hat{n} \, dS = 2 V_{LHI} \Psi$$

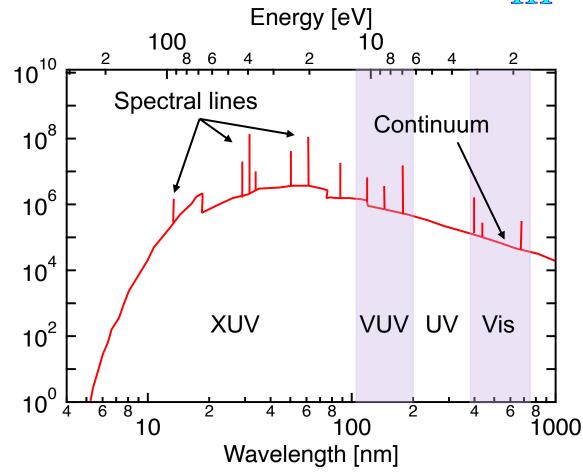
Resistive Helicity Dissipation:

$$\dot{K}_{dis} = -2 \int \eta \vec{J} \cdot \vec{B} \, dV \approx \frac{2\pi R_0}{A_p} \langle \eta \rangle I_p \Psi$$

• In Steady state, Source = Sink

$$V_{LHI} = V_{inj} \frac{A_{inj} B_{inj}}{\Psi}$$

$$I_p \le \frac{A_p}{2 \pi R_0 \langle \eta \rangle} (V_{loop} + V_{LHI})$$




### Diagnostic Development

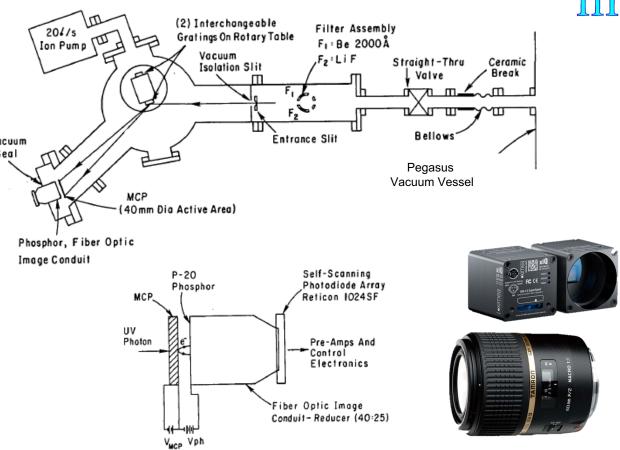
### Impurity Content Can be Characterized by Looking at Different Parts of EM Spectrum

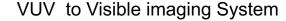


- Impurities increase EM radiation
  - XUV part contributes the most to power losses
- Bremsstrahlung emission
  - Continuum radiation
  - Electrons slow down after colliding with ions
  - Proportional to ion charge
- Line emission
  - Line emitted from transitions in electrons
  - Bright, resonant lines in the VUV are easy to identify



Inspired by: H.-J. Kunze, *Introduction to Plasma Spectroscopy* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009).





Intensity [A. U.]

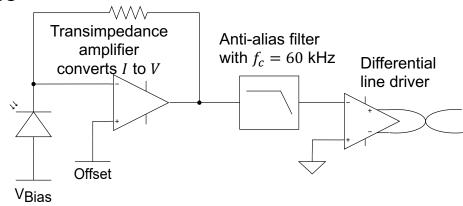
#### Impurity Species Monitored With VUV Spectroscopy



- SPRED VUV Spectrometer
  - Single line of sight at R<sub>tan</sub> = 20 cm
- Two interchangeable gratings
  - High resolution grating
    - Spectral Range 10 to 32 nm, resolution 0.04 nm
    - Useful for metallic lines like Mo, W and Ti
  - Low resolution grating
    - Spectral range 15.5 to 170 nm, resolution 0.3 nm
    - Coverage for Li-like to B-like low-z impurity lines
- CMOS image sensor
  - 2048 x 1088 Resolution
  - Temporal resolution ~ 1.5 kHz at 2048 x 120

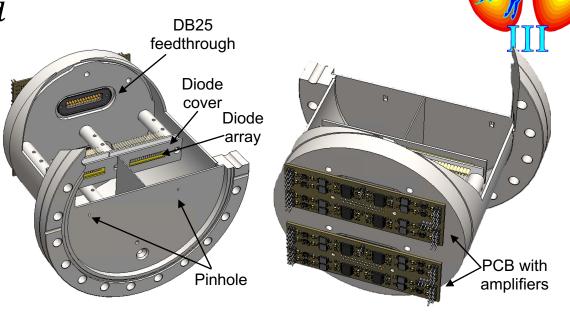


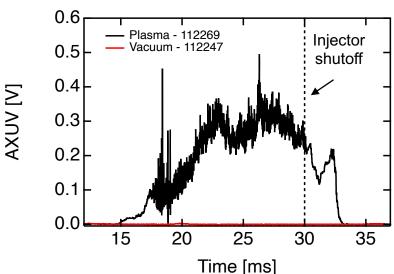





R. J. Fonck et al., Applied Optics 21.12, 2115 (1982)

New AXUV Diagnostic Allows High Spatial and Temporal Resolution Measurements of  $P_{rad}$ 

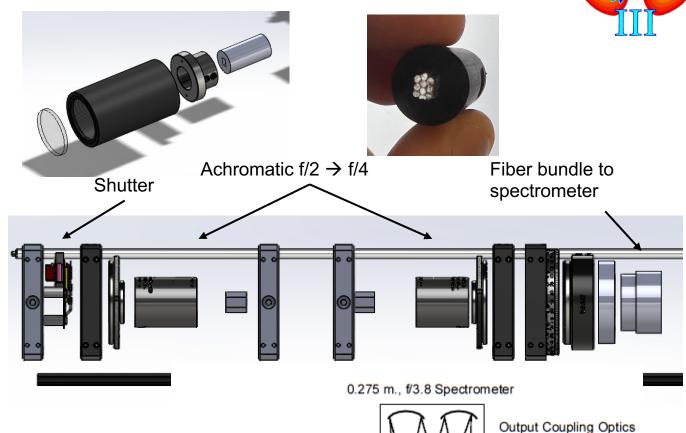

Two 16-channel AXUV16ELG photodiode arrays


- 32 lines of sight
- $R_{tan} \approx 9 90$  cm, ~ 2.5 cm spatial resolution
- Onion inversion algorithm<sup>1</sup> to obtain  $P_{rad}(R)$
- Three-stage amplifiers for high signal-to-noise ratio



<sup>1</sup> C.J. Dasch, Applied Optics **31**, 1146 (1992).








#### Upgrades to VB Diagnostic Increase Throughput



- Low radiance is expected for PEGASUS-III
  - $n_e \sim 1 \times 10^{19} \text{ m}^3$ ,  $T_e \sim 100 \text{ eV}$
  - $B_{brems} = \int \epsilon \, ds \sim 1 \times 10^{10} \, \frac{\gamma}{s} \, \frac{1}{\text{cm}^2} \, \frac{1}{\text{nm}}$
- Throughput to be increased by ~×10
  - Ten 1 mm f/2 fibers collect light
  - Introduced fast shutter (~ 2 ms)
  - Vertical binning of the full CCD
- Expected Counts (DN) ~ 20
  - $U = 1.4 \times 10^{-2} \text{ cm}^2 \text{ sr (SpectraPro 275)}$
  - QE = 70%, G = 0.125 DN/photons
  - $\Delta \lambda \approx 1 \text{ nm}$
  - $DN = B_{brems} \times U \times QE \times G \times \Delta t \times \Delta \lambda$

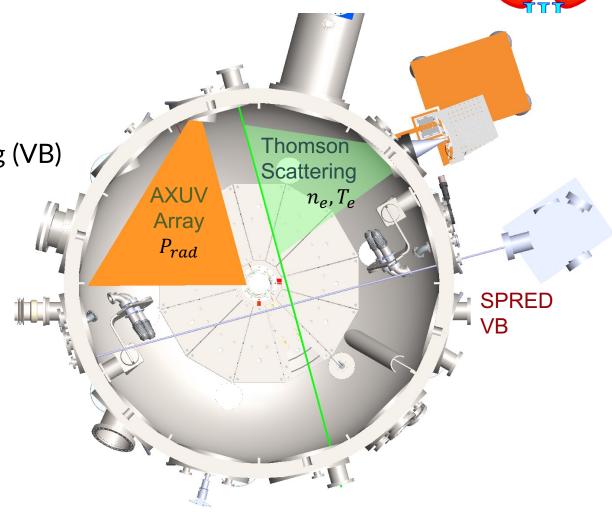


Input Flexible

Fiber Bundle, Rc=10.5 cm

Quartz fibers




#### Impurity Studies will Utilize Multiple Diagnostics

Species Identification with SPRED

•  $Z_{eff}$  measurements with Visual Bremsstrahlung (VB)

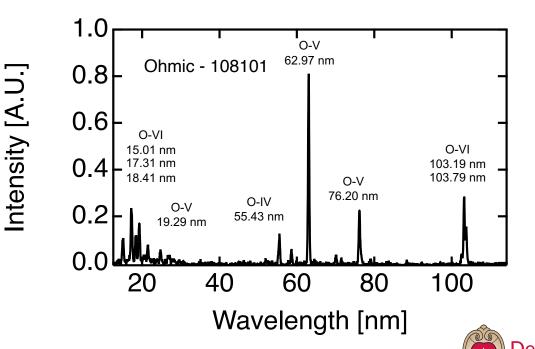
• Needs  $n_e$  and  $T_e$  from Thomson Scattering

- AXUV radiometry for  $P_{rad}$
- CHERS is under development\*
  - Can directly measure impurity densities
- Impurity transport modeling with STRAHL



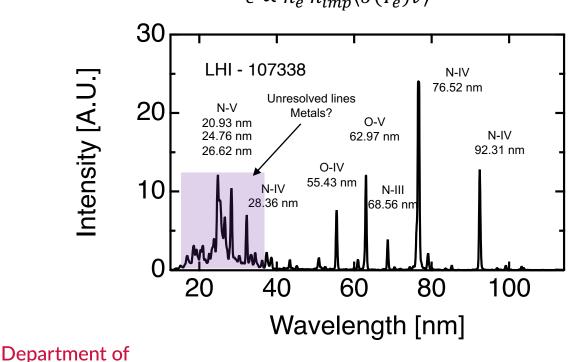


#### VUV Spectra Suggest Increased Impurity Influx During LHI


Engineering Physics

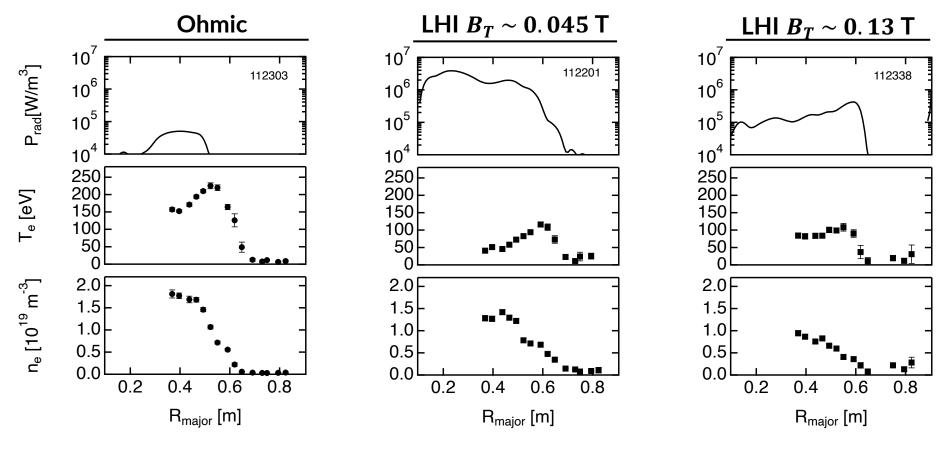
INIVERSITY OF WISCONSIN-MADISON




#### Ohmic Discharge

- Oxygen dominated
- Low intensity (100s counts)




#### **LHI Discharge**

- Nitrogen and oxygen Identified
  - Possible sources are plasma material interaction
- Intensity is higher than Ohmic
  - At similar  $n_e$  and  $T_e$ , this suggest higher  $n_{imp}$   $\epsilon \propto n_e \; n_{imp} \langle \sigma(T_e) v \rangle$

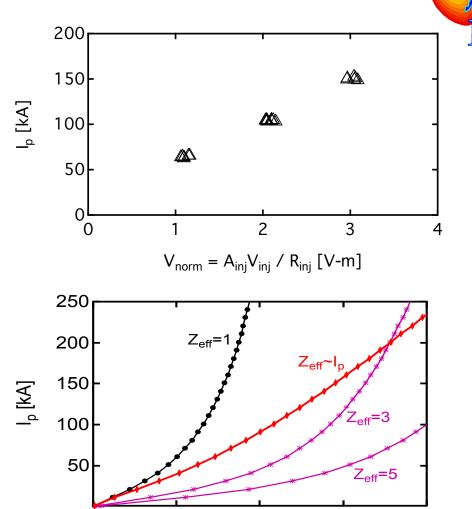


### Clear Differences in $P_{rad}$ are Observed Between Ohmic and LHI and Between Different $B_T$ Levels





- AXUV diode sensitivity drops for photons with energies < 50 eV
  - Currently working on correction factor to account for change in diode response




### Observed $I_p$ Trends Motivate Measurements of $Z_{eff}$

- $I_p \propto V_{LHI}$ 
  - Implies constant  $\langle \eta \rangle$
  - Motivates efforts to determine  $Z_{eff}$
- Bremsstrahlung continuum can be used to measure  $Z_{eff}$

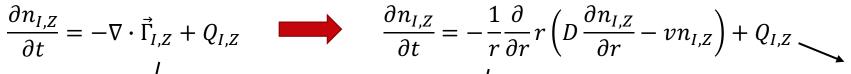
$$\frac{d\epsilon}{d\lambda} = 7.632 \times 10^{-15} \frac{n_e^2 g_{eff} Z_{eff}}{T_e^{1/2} \lambda} e^{-\frac{hc}{\lambda T_e}} \left[ \frac{\gamma}{s} \frac{1}{\text{cm}^3} \frac{1}{\text{nm}} \right]$$

- Other sources of emission may complicate measurement:
  - Line radiation
  - Electron-neutral bremsstrahlung
  - Molecular hydrogen emission



 $V_{norm} = A_{ini}V_{ini} / R_{ini} [V-m]$ 




### Impurity Transport Modeling

#### Transport Code STRAHL is Used for Impurity Studies



- STRAHL is an impurity transport code that solves the continuity equation
- Code outputs: impurity densities and emission
- 1-D cylindrical equation obtained if particle flux is averaged over a flux surface

$$\frac{\partial n_{I,Z}}{\partial t} = -\nabla \cdot \vec{\Gamma}_{I,Z} + Q_{I,Z}$$



- Impurity flux separated into diffusive and convective term
  - Diffusion is proportional to  $\nabla n_{IZ}$
  - Convection is proportional to  $n_{IZ}$

$$\Gamma_{I,Z} = D \nabla n_{I,Z} + v n_{I,Z}$$

 Radial label is related to the flux surface volume

$$r = \sqrt{\frac{V}{2\pi^2 R_0}}$$

Sources/sinks couple neighboring states

$$\begin{split} Q_{I,Z} &= - \big( n_e S_{I,Z} + n_e \alpha_{I,Z} + n_H \alpha_{I,Z}^{cx} \big) n_{I,Z} \\ &+ n_e S_{I,Z-1} n_{I,Z-1} \\ &+ \big( n_e \alpha_{I,Z+1} + n_H \alpha_{I,Z+1}^{cx} \big) n_{I,Z+1} \end{split}$$

• Ionization ( $S_{I,Z}$ ), recombination ( $\alpha_{I,Z}$ ) and charge exchange  $(\alpha_{LZ}^{cx})$  rates obtained from ADAS<sup>2</sup>

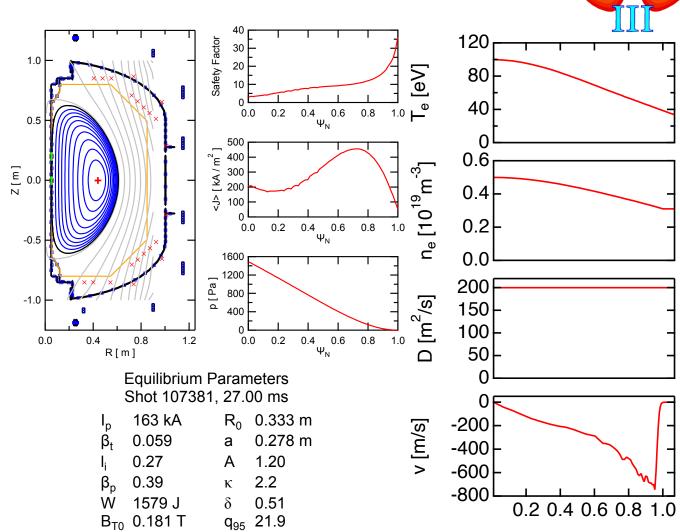
<sup>&</sup>lt;sup>2</sup> H.P. Summers and M.G. O'Mullane, in AIP Conference Proceedings (2000), pp. 304–312.



<sup>&</sup>lt;sup>1</sup> R. Dux, "STRAHL User Manual," IPP Report 10/30, 2006.

#### Initial Analysis With STRAHL for an LHI Discharge

- Inputs to the code
  - Magnetic geometry from equilibrium reconstruction
  - Peaked background pressure profile

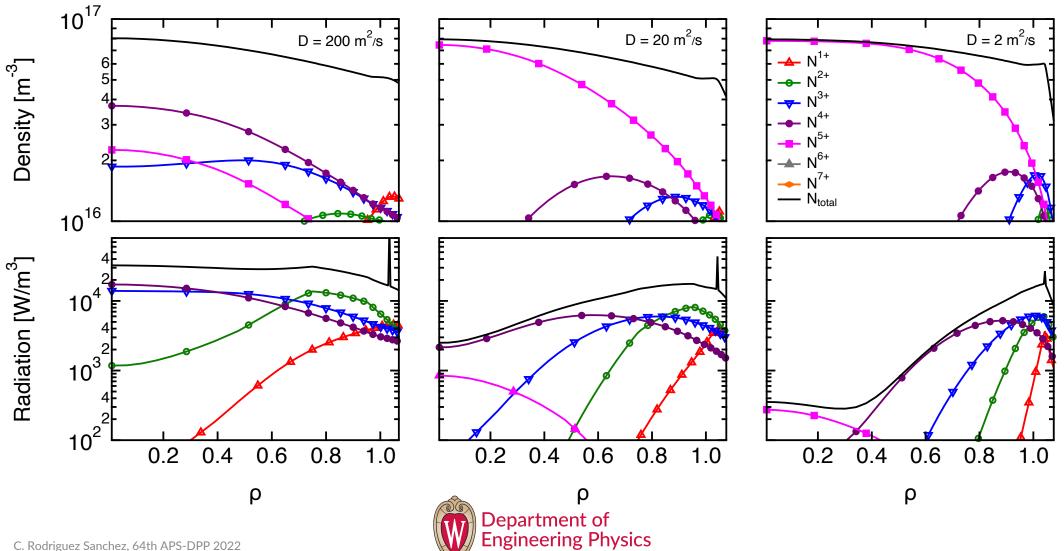

• 
$$T_{e0} = 100 \text{ eV}$$

• 
$$n_{e0} = 0.5 \times 10^{19} \text{ m}^{-3}$$

Transport coefficients

• 
$$D \sim \frac{a^2}{\tau_E} \sim \frac{a^2}{\tau_p} \sim 200 \text{ m}^2 / \text{s}$$

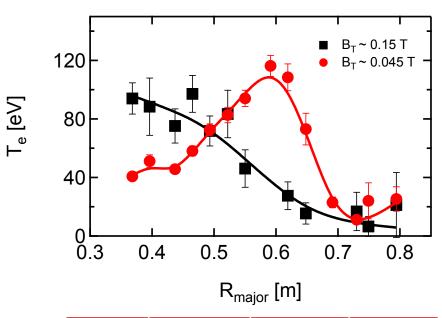
- Neo-Alcator scaling predicts  $\tau_E \sim 0.5$  ms
- $v = D \frac{1}{n_e} \frac{dn_e}{dr}$  if steady-state  $n_{imp}$  is assumed
- Source rate chosen such that  $\frac{n_{imp}}{n_e} \sim 1.5\%$ 
  - Localized at the plasma edge  $\rho > 1$




ρ



#### Reduced Impurity Transport Affects Charge-State Balance and Radiation Profile






JNIVERSITY OF WISCONSIN-MADISON

# Strong Impurity Transport May Explain Observed $T_e$ Profiles

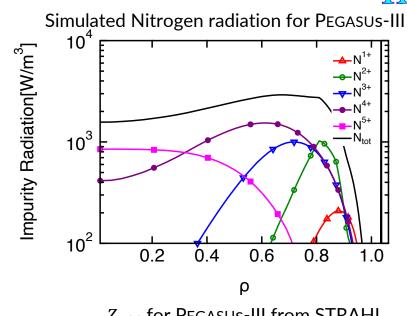
- LHI hollow current profiles → low core Ohmic heating ¹
  - $\eta J_0^2 \sim 10 \text{ kW/m}^3$
- Strong transport leads to high core radiation
  - Low, highly radiative charge states can exist in the core
  - Flat radiation profile
  - $P_{rad,0} > \eta J_0^2$
- Reduced impurity transport  $\rightarrow$  hollow  $P_{rad}(R)$ 
  - Low charge states reside only at the edge
- Reduced transport expected at higher  $B_T$
- In all cases  $P_{rad} < P_{in}$

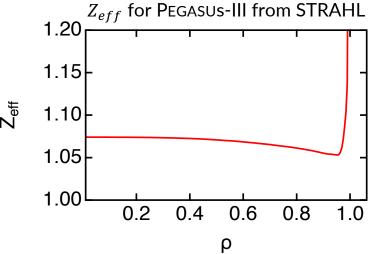


| <i>D</i><br>[m²/s] | $P_{rad,0}$ [kW/m $^3$ ] | $P_{rad,a}$ [kW/m $^3$ ] | P <sub>rad</sub><br>[kW] |
|--------------------|--------------------------|--------------------------|--------------------------|
| 200                | 32.5                     | 18.1                     | 28.5                     |
| 20                 | 2.5                      | 15.7                     | 12.8                     |
| 2                  | 0.3                      | 15.9                     | 4.7                      |



<sup>&</sup>lt;sup>1</sup> G.M. Bodner et al., Physics of Plasmas **28**, 102504 (2021)

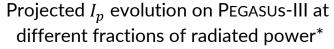

### Impurity Assessment on PEGASUS-III

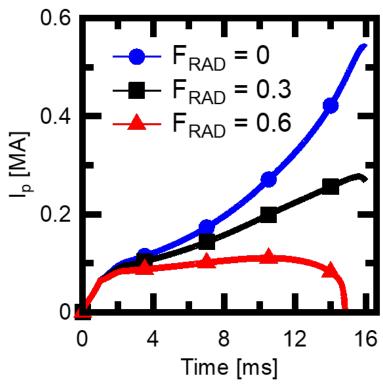

# LHI Impurity Sourcing, Concentrations and Effects on LHI Performance Will be Explored in PEGASUS-III



- Experiments will characterize impurity sources from LHI
  - Cathode spots from injectors
  - Injector structures
  - Sputtering/ablation of wall materials due to electron beam
  - Combination of SPRED gratings allow to observe impurity lines
- Impurity concentration will be inferred through  $Z_{eff}$ 
  - Simulations with STRAHL predict flat  $Z_{eff}(R)$
  - Line-averaged  $Z_{eff}$  measurements with VB
- A more direct calculation of resistive dissipation and helicity drive
  - Helicity dissipated resistively
  - Needed for reliable  $I_p$  projections






## Experiments will Investigate Impact of Impurity Transport in LHI Startup and Power Balance



- Transport could play an important role in resistive dissipation
  - Possible cooling of  $T_e$  if high core radiation
- Changes in  $B_T$  may induce changes in transport
  - Evidence of improved transport at higher field seen on PEGASUS
  - New PEGASUS-III TF coils permit a wider  $B_T$  scan
- Transport determined from STRAHL and experiments
  - Use measured  $P_{rad}(R)$  and  $Z_{eff}$  as constraint for STRAHL
- Radiation losses important for power balance





\*See J. D. Weberski CP11.00049



### Influence of Impurities on HI Tokamak Startup will be Studied in PEGASUS-III



- Impurity studies are needed for better LHI projections
  - Impurities affect helicity dissipation through changes in resistivity
    - Increase in mean ionic charge and cooling
  - Radiation power losses impact power balance
  - Accurate  $I_p(t)$  projections require a model to scale helicity dissipation
- A suite of diagnostics and tools will be used to do an impurity assessment
  - Species identification with SPRED
    - New high-resolution grating will help to resolve previously unresolved lines
  - VB spectroscopy for  $Z_{eff}$ 
    - Throughput of the diagnostic increased by ~10×
    - New spectral survey planned to find region free of line emission
  - AXUV radiometry for  $P_{rad}$ 
    - New 32-channel designed, calibrated and ready for operations
  - Impurity Transport modeling with STRAHL

