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Tokamak Startup Via Local Helicity Injection 
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PEGASUS-III: A Dedicated Non-Solenoidal Startup 
Experiment at low A

• Future power plants benefit from solenoid-free operations
• Cost reduction
• Increased space for shielding and blanket
• Simplified design

• The new PEGASUS-III facility is a major upgrade to the 
PEGASUS ST
• Removal of the Ohmic solenoid
• Upgraded TF magnet assembly to deliver up to 0.6 T on axis 
• Mission: compare, contrast and combine startup techniques

• Helicity Injection (LHI and CHI)
• RF heating and current drive (EBW, EC)

• Impurity roles in plasma startup 
• Power balance
• Limit current drive: 𝐼!~ 𝑉/𝑅

C. Rodriguez Sanchez, 64th APS-DPP 2022



Predicting LHI Performance Needs Impurity Assessment

• Helicity input balanced by resistive dissipation

• Impurity concentration directly affects resistivity
• Increased 𝑍"##
• Plasma cooling 

• LHI is useful if its target can couple to other CD
• Acceptably low 𝑍"##
• Power losses do not impact the power balance

C. Rodriguez Sanchez, 64th APS-DPP 2022
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Local Helicity Injection (LHI) is a Promising Non-Solenoidal 
Startup Technique

• LHI provides solenoid-free startup
• Edge current extracted from injectors at boundary
• Relaxation to tokamak-like state via helicity-conserving 

instabilities

•Used routinely for startup on PEGASUS

C. Rodriguez Sanchez, 64th APS-DPP 2022
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Current Drive With LHI is Limited by Resistive Dissipation

C. Rodriguez Sanchez, 64th APS-DPP 2022

• AC Helicity Injection:      𝐾̇!" = −2 #$
#%
Ψ = 2V&''(Ψ

• DC Helicity injection: 𝐾̇)" = −2∫𝜙𝐵 + ,𝑛 𝑑𝑆 = 2V*+,Ψ

• Resistive Helicity Dissipation: 𝐾̇-./ = −2∫𝜂𝐽 + 𝐵 𝑑𝑉 ≈ 012.
!/

𝜂 𝐼3Ψ

• In Steady state, Source = Sink

𝐾 = 6𝐴 + 𝐵 𝑑𝑉 𝑑𝐾
𝑑𝑡

= −2
𝜕𝜓
𝜕𝑡
Ψ − 26𝜙𝐵 + ,𝑛 𝑑𝑆 − 26𝜂𝐽 + 𝐵 𝑑𝑉

𝐼3 ≤
𝐴3

2 𝜋𝑅4 𝜂
𝑉5663 + 𝑉789𝑉789 = 𝑉.:;

𝐴.:;𝐵.:;
Ψ



Diagnostic Development



Impurity Content Can be Characterized by Looking at Different 
Parts of EM Spectrum

C. Rodriguez Sanchez, 64th APS-DPP 2022

Inspired by: H.-J. Kunze, Introduction to Plasma Spectroscopy
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2009).

• Impurities increase EM radiation
• XUV part contributes the most to power losses

• Bremsstrahlung emission
• Continuum radiation 

• Electrons slow down after colliding with ions
• Proportional to ion charge

• Line emission
• Line emitted from transitions in electrons
• Bright, resonant lines in the VUV are easy to identify
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Pegasus 
Vacuum Vessel

Impurity Species Monitored With VUV Spectroscopy

• SPRED VUV Spectrometer
• Single line of sight at Rtan =20 cm

• Two interchangeable gratings
• High resolution grating

• Spectral Range 10 to 32 nm, resolution 0.04 nm

• Useful for metallic lines like Mo, W and Ti

• Low resolution grating
• Spectral range 15.5 to 170 nm, resolution 0.3 nm

• Coverage for Li-like to B-like low-z impurity lines

• CMOS image sensor
• 2048 x 1088 Resolution
• Temporal resolution ~ 1.5 kHz at 2048 x 120

C. Rodriguez Sanchez, 64th APS-DPP 2022

VUV  to Visible imaging System

R. J. Fonck et al., Applied Optics 21.12, 2115 (1982) 



New AXUV Diagnostic Allows High Spatial and Temporal 
Resolution Measurements of 𝑃!"#
• Two 16-channel AXUV16ELG photodiode 

arrays
• 32 lines of sight
• 𝑅012 ≈ 9 − 90 cm, ~ 2.5 cm spatial resolution
• Onion inversion algorithm  to obtain 𝑃31$(𝑅)

• Three-stage amplifiers for high signal-to-noise 
ratio

C. Rodriguez Sanchez, 64th APS-DPP 2022
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Upgrades to VB Diagnostic Increase Throughput

C. Rodriguez Sanchez, 64th APS-DPP 2022

• Low radiance is expected for 
PEGASUS-III
• 𝑛" ~1 × 10:; m3, 𝑇" ~ 100 eV

• 𝐵<3"=& = ∫𝜖 𝑑𝑠 ~ 1 × 10:> ?
&

:
@A(

:
BA

• Throughput to be increased by ~×10
• Ten 1 mm f/2 fibers collect light
• Introduced fast shutter (~ 2 ms)
• Vertical binning of the full CCD 

• Expected Counts (DN) ~ 20
• 𝑈 = 1.4×10+' cm2 sr (SpectraPro 275)
• QE = 70%, G = 0.125 DN/photons
• Δ𝜆 ≈ 1 nm

• 𝐷𝑁 = 𝐵<3"=& × 𝑈 × 𝑄𝐸 × 𝐺 × Δ𝑡 × Δ𝜆

Shutter
Achromatic f/2 à f/4 Fiber bundle to 

spectrometer

G McKee, UW-Madison NEEP (1995) 



Thomson
Scattering

𝑛", 𝑇"AXUV
Array
𝑃31$

SPRED
VB

Impurity Studies will Utilize Multiple Diagnostics

• Species Identification with SPRED

• 𝑍<== measurements with Visual Bremsstrahlung (VB)
• Needs 𝑛" and 𝑇" from Thomson Scattering

• AXUV radiometry for 𝑃>?-

• CHERS is under development*
• Can directly measure impurity densities 

• Impurity transport modeling with STRAHL

C. Rodriguez Sanchez, 64th APS-DPP 2022
*See A. K. Keyhani CP11.00052
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• Nitrogen and oxygen Identified
• Possible sources are plasma material interaction

• Intensity is higher than Ohmic
• At similar 𝑛" and 𝑇", this suggest higher 𝑛%=!

𝜖 ∝ 𝑛" 𝑛%=! 𝜎 𝑇" 𝑣

• Oxygen dominated

• Low intensity (100s counts) 
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Clear Differences in 𝑃!"# are Observed Between Ohmic 
and LHI and Between Different 𝐵$ Levels

C. Rodriguez Sanchez, 64th APS-DPP 2022
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• AXUV diode sensitivity drops for photons with energies < 50 eV
• Currently working on correction factor to account for change in diode response  



Observed 𝐼% Trends Motivate Measurements of 𝑍&''

C. Rodriguez Sanchez, 64th APS-DPP 2022

• 𝐼3 ∝ 𝑉789
• Implies constant 𝜂
• Motivates efforts to determine 𝑍"##

• Bremsstrahlung continuum can be used to 
measure 𝑍<==

𝑑𝜖
𝑑𝜆 = 7.632×10+:C

𝑛"'𝑔"##𝑍"##
𝑇":/'𝜆

𝑒+
DE
FG)

𝛾
𝑠

1
cm,

1
nm

• Other sources of emission may complicate 
measurement:
• Line radiation

• Electron-neutral bremsstrahlung

• Molecular hydrogen emission

250

200

150

100

50

I p 
[k

A]

43210
Vnorm = AinjVinj / Rinj   [V-m]

Zeff=1

Zeff=3

Zeff=5

Zeff~Ip

200

150

100

50

0

I p 
[k

A]

43210

Vnorm = AinjVinj / Rinj [V-m]



Impurity Transport Modeling



• STRAHL is an impurity transport code that solves the continuity equation

• Code outputs: impurity densities and emission 

• 1-D cylindrical equation obtained if particle flux is averaged over a flux surface

Transport Code STRAHL is Used for Impurity Studies

C. Rodriguez Sanchez, 64th APS-DPP 2022

𝜕𝑛",$
𝜕𝑡

= −
1
𝑟
𝜕
𝜕𝑟
𝑟 𝐷

𝜕𝑛",$
𝜕𝑟

− 𝑣𝑛",$ + 𝑄",$
𝜕𝑛",$
𝜕𝑡

= −∇ 5 Γ⃗",$ + 𝑄",$

• Sources/sinks couple neighboring states

• Ionization (𝑆H,J), recombination (𝛼H,J) and 
charge exchange (𝛼H,JEK ) rates obtained from 
ADAS

𝑄H,J = − 𝑛"𝑆H,J + 𝑛"𝛼H,J + 𝑛L𝛼H,JEK 𝑛H,J
+𝑛"𝑆H,J+:𝑛H,J+:
+ 𝑛"𝛼H,JM: + 𝑛L𝛼H,JM:EK 𝑛H,JM:

• Impurity flux separated into 
diffusive and convective term

• Diffusion is proportional to ∇𝑛*,,
• Convection is proportional to 𝑛*,,

ΓN,O = 𝐷∇𝑛H,J + 𝑣𝑛H,J
𝑟 =

𝑉
2𝜋'𝑅>

• Radial label is related to 
the flux surface volume

1

21 R. Dux, “STRAHL User Manual,” IPP Report 10/30, 2006.
2 H.P. Summers and M.G. O’Mullane, in AIP Conference Proceedings (2000), pp. 304–312.
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Initial Analysis With STRAHL for an LHI Discharge

• Inputs to the code
• Magnetic geometry  from equilibrium 

reconstruction

• Peaked background pressure profile

• 𝑇-. = 100 eV

• 𝑛-. = 0.5 × 10/0 m-3

• Transport coefficients

• 𝐷~ 1!

2"
~ 1!

2#
~200m2 /s

• Neo-Alcator scaling predicts  𝜏3 ~ 0.5 ms

• 𝑣 = 𝐷 /
4$

54$
56

if steady-state 𝑛789 is assumed

• Source rate chosen such that 
2:;'
2)

~ 1.5%

• Localized at the plasma edge 𝜌 > 1

C. Rodriguez Sanchez, 64th APS-DPP 2022
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Reduced Impurity Transport Affects Charge-State Balance 
and Radiation Profile

C. Rodriguez Sanchez, 64th APS-DPP 2022 20
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Strong Impurity Transport May Explain Observed 
𝑇& Profiles

𝑫
[m2/s]

𝑷𝒓𝒂𝒅,𝟎
[kW/m3]

𝑷𝒓𝒂𝒅,𝒂
[kW/m3]

𝑷𝒓𝒂𝒅
[kW]

200 32.5 18.1 28.5

20 2.5 15.7 12.8

2 0.3 15.9 4.7

C. Rodriguez Sanchez, 64th APS-DPP 2022

• LHI hollow current profiles à low core Ohmic heating

• 𝜂𝐽>'~ 10 kW/m3

• Strong transport leads to high core radiation

• Low, highly radiative charge states can exist in the core

• Flat radiation profile

• 𝑃31$,> > 𝜂𝐽>'

• Reduced impurity transport à hollow 𝑃%&'(𝑅)

• Low charge states reside only at the edge

• Reduced transport expected at higher 𝐵(

• In all cases 𝑃%&' < 𝑃)*

1 G.M. Bodner et al., Physics of Plasmas 28, 102504 (2021)
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Impurity Assessment on PEGASUS-III



102

103

104

Im
pu

rit
y 

R
ad

ia
tio

n[
W

/m
3 ]

1.00.80.60.40.2
ρ

N1+

N2+

N3+

N4+

N5+

Ntot

LHI Impurity Sourcing, Concentrations and Effects on LHI 
Performance Will be Explored in PEGASUS-III

• Experiments will characterize impurity sources from LHI
• Cathode spots from injectors
• Injector structures
• Sputtering/ablation of wall materials due to electron beam
• Combination of SPRED gratings allow to observe impurity lines

• Impurity concentration will be inferred through 𝑍<==
• Simulations with STRAHL predict flat 𝑍"##(𝑅)
• Line-averaged 𝑍"## measurements with VB 

• A more direct calculation of resistive dissipation and helicity 
drive
• Helicity dissipated resistively
• Needed for reliable 𝐼! projections

C. Rodriguez Sanchez, 64th APS-DPP 2022
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Experiments will Investigate Impact of Impurity Transport 
in LHI Startup and Power Balance

• Transport could play an important role in resistive 
dissipation
• Possible cooling of 𝑇" if high core radiation

• Changes in 𝐵@ may induce changes in transport

• Evidence of improved transport at higher field seen on PEGASUS
• New PEGASUS-III TF coils permit a wider 𝐵G scan

• Transport determined from STRAHL and experiments
• Use measured 𝑃31$ 𝑅 and 𝑍"## as constraint for STRAHL 

• Radiation losses important for power balance

C. Rodriguez Sanchez, 64th APS-DPP 2022

Projected 𝐼9 evolution on PEGASUs-III at 
different fractions of radiated power*

*See J. D. Weberski CP11.00049



Influence of Impurities on HI Tokamak Startup will be 
Studied in PEGASUS-III

• Impurity studies are needed for better LHI projections
• Impurities affect helicity dissipation through changes in resistivity

• Increase in mean ionic charge and cooling 
• Radiation power losses impact power balance
• Accurate 𝐼!(𝑡) projections require a model to scale helicity dissipation

• A suite of diagnostics and tools will be used to do an impurity assessment
• Species identification with SPRED

• New high-resolution grating will help to resolve previously unresolved lines
• VB spectroscopy for 𝑍"##

• Throughput of the diagnostic increased by ~10×
• New spectral survey planned to find region free of line emission

• AXUV radiometry for 𝑃31$
• New 32-channel designed, calibrated and ready for operations

• Impurity Transport modeling with STRAHL

C. Rodriguez Sanchez, 64th APS-DPP 2022


