

Diagnostic Neutral Beam and Charge Exchange Recombination Spectroscopy Diagnostic for Studying Non-Solenoidal Tokamak Startup in PEGASUS-III

A.K. Keyhani

M.W. Bongard, S.J. Diem, R.J. Fonck, B.T. Lewicki, M.D. Nornberg, G.R. Winz

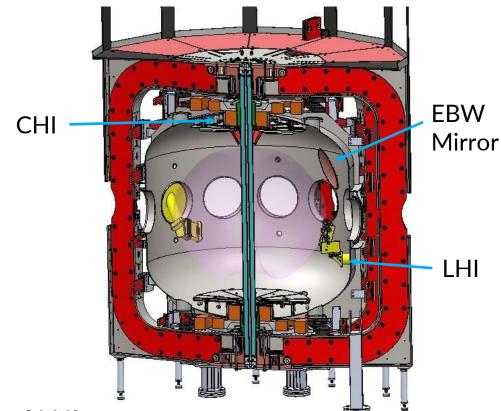
64th Annual Meeting of the APS Division of Plasma Physics, Spokane, WA

Presentation CP11.00052

17 October 2022

Non-Solenoidal Tokamak Plasma Startup and Drive in PEGASUS-III

PEGASUS-III: Non-Solenoidal Current Drive (CD) Research and Development

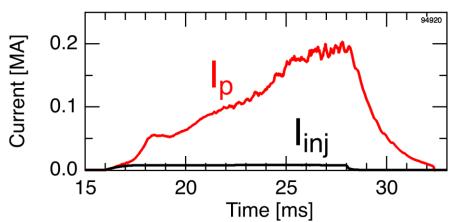


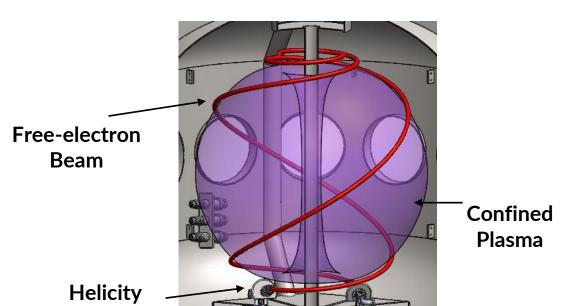
Exploring Tokamak CD Techniques:

- Local Helicity Injection (LHI)
- Coaxial Helicity Injection (CHI)
- RF assist and sustainment (EBW)

Objectives

- Validate technology for MA-class plasma startup
- Build physics understanding of CD mechanisms
- Assess compatibility with NBI and RF sustainment
- Deploy internal diagnostics, critical for characterization of LHI





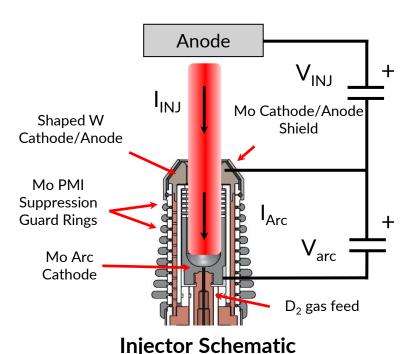
LHI Drives High I_p Plasmas with Compact Hardware

Injectors

- Routine startup from vacuum
- $I_p \le 250 \text{kA}$
- Demonstrated sustainment with Ohmic CD
- Port-retractable electrodes
- Flexible geometry

Essential features need evaluation for scaling:

- Equilibrium pressure profile
- Impurity sourcing, transport
- Predictive model
- Current density structure

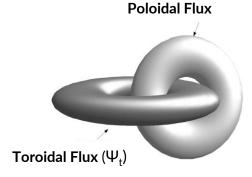

Expanded Operating Space Will Advance Understanding of HI Startup and Current Drive

	Parameter	PEGASUS	PEGASUS-III
	ψ_{sol} [mWb]	40	0
)	$B_{TF, max}$ [T]	0.15	0.58
	B _{TF} Flattop [ms]	25	50–100
	I_p [kA]	≤200	≤300
	I_{inj} [kA]	<8	~16
	$\langle T_e \rangle$ [eV]	~100	~200
	$\langle n_e angle$ [m $^{ ext{-}3}$]	<1x10 ¹⁹	~2x10 ¹⁹

Higher-performance enables:

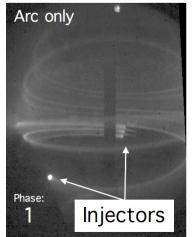
- Higher T_e , higher charge state impurities
- Average densities >1×10¹⁹ m⁻³
- Localized measurements with a DNB
- Majority $T_i(r)$ with active spectroscopy

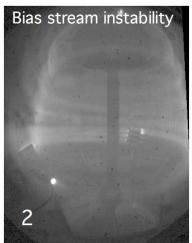
- → No solenoid, HI is primary startup and CD
- \rightarrow New TF magnets enable higher B_{TF} to investigate confinement, I_p scaling
- \rightarrow New power supplies: longer pulse lengths, greater I_p



2x 4cm² Aperture LHI Array

LHI Plasmas are Generated by Taylor Relaxation of Edge-Injected **Direct Current**


- 1. Helicity, K, injected along open field lines into plasma $K = \int \mathbf{A} \cdot \mathbf{B} d^3x$ volume by DC electrodes at plasma edge


 $\lambda \mathbf{B} = \mu_0 \mathbf{J}$



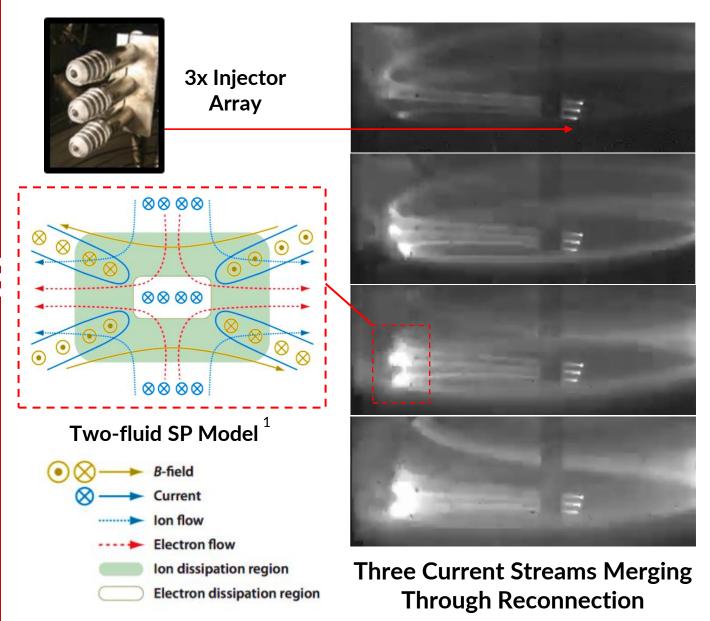
2.
$$J_{edge} >> J_{core}$$
, forms an unstable magnetic topology

3. System relaxes, transporting current to the core

LHI Startup Phases

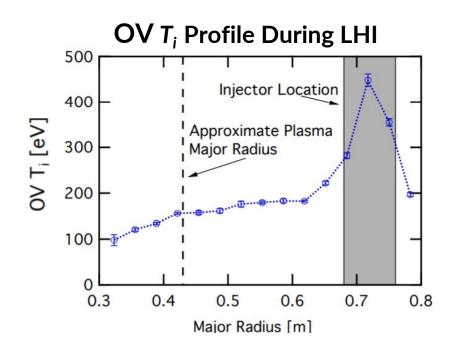
$$\frac{dK_{tot}}{dt} = \underbrace{2\Psi \frac{d\psi}{dt}}_{\text{Induction}} - \underbrace{2\oint_{S} dS(\phi \mathbf{B} \cdot n)}_{\text{Injection}} - \underbrace{2\int_{V} dV(\mathbf{E} \cdot \mathbf{B})}_{\text{Dissipation}}$$

$$V_{LHI} = V_{inj} \frac{N_{inj} A_{inj} B_{inj}}{\Psi_t}$$


- Net I_p from effective loop voltage, V_{LHI}
- LHI drives continuous magnetic reconnection events!

Anomalous Ion Heating May Impact LHI Performance

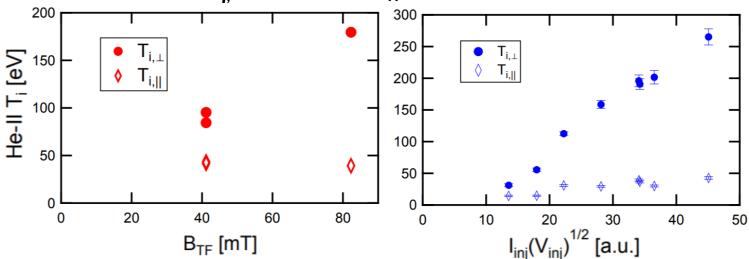
Magnetic Reconnection Heats Plasma and Drives Bulk Flow



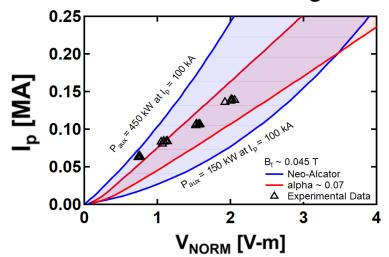
- In this regime, reconnection is described with a two-fluid Sweet Parker (SP) model
- Distance between opposing field lines approaches the ion inertial length
- Ions decouple from the reconnecting flux
- Two-fluid SP model predicts:
 - Charge separation
 - Increase in dissipation volume
 - High rates of energy transfer
 - Anisotropic heating

Reconnection heating suggests P_{AUX} for 0-D global power balance

Reconnection-Heated Ions Contribute Pressure to Equilibrium and Impact Plasma Performance

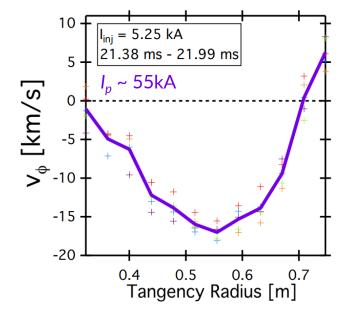


- Difficult to infer majority behavior from impurities
- If majority species $T_i \sim T_e$, reconnection heating is comparable to Ohmic heating


- Magnetic reconnection preferentially heats ions
- From passive impurity measurements, $T_i >> T_e$ in edge
- Anomalously high T_i extends to the core, $T_i \ge T_e$
- Anisotropic heating and scaling consistent with theory

Flow Shear and Electron Heating May Improve Confinement, I_p Scaling

LHI Scaling Assuming Linear Ohmic, Stochastic Confinement Regimes

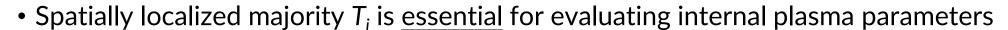

- Reconnection P_{AUX} must be considered to explain I_p trend with existing models
- At equilibrium, helicity input balances resistive helicity dissipation
- Increased P_{AUX} or improved confinement yields higher I_p

$$P_{in} = (V_{LHI}I_p + P_{aux})(1 - F_{rad})$$

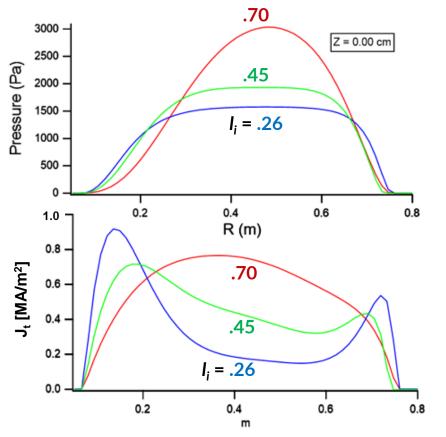
$$P_{loss} = W/ au_e$$
 or $\sim n_e T_e v_{th_e}^2 au_c S^{-2lpha}$

- LHI bias can drive bulk flow shear
- Possible impact on transport
- Scaling with B_{TF} , I_p , and LHI parameters informs predictive model

He-II V_{α} Displays Flow Shear Near Edge



Majority T_i Necessary to Constrain Equilibria


- P and J profiles are ambiguous with external diagnostics alone
- KFIT equilibria modeled for assessment of diagnostics

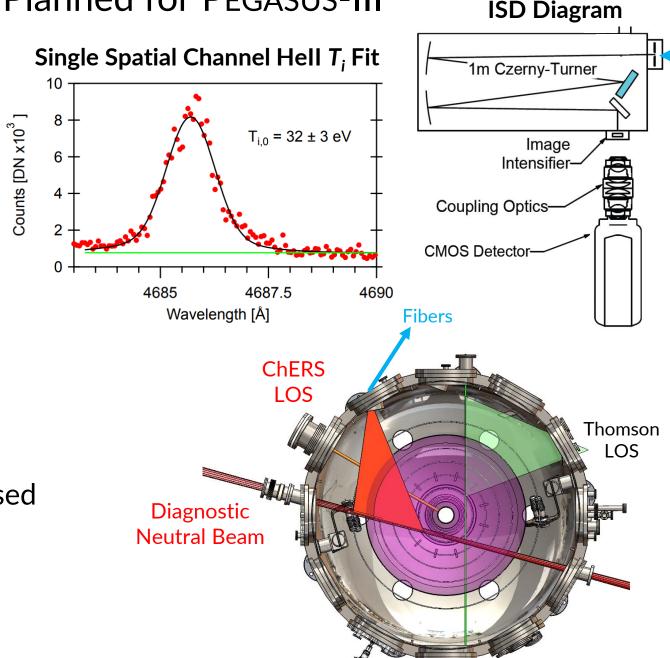
Electron Pressure Profile Highly Dependent on V_{LHI} 200 60 kA 80 kA 100 kA 140 kA 140 kA

• If $p_i \sim p_e$, p_{total} may vary drastically with $V_{i Hi}$

Majority $T_i(r)$ Diagnostic in Development

DNB and ChERS Diagnostics Planned for PEGASUS-III

Refurbished DNB


- 60-80kV H⁰ DNB ≤4A
- 3.3 to 4.5cm diameter within plasma

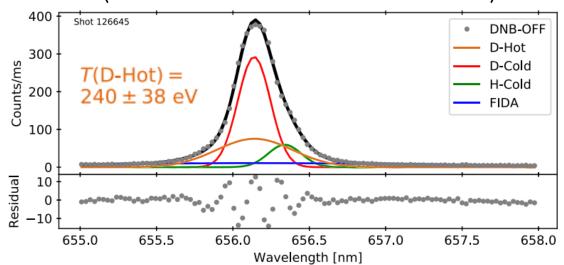
Impurity ChERS with repurposed Ion-Spectroscopy Diagnostic (ISD)

- Move sightlines to intersect DNB
- Inject helium as an impurity
- Observe 468.5nm line from He⁺⁺
- Fit for $T_i(r,t)$ and $V_{\omega}(r,t)$ measurements

New Majority ChERS diagnostic proposed

- Observe deuterium-alpha (Dα), 656.3nm
- Measure equilibrium $T_i(r)$ in LHI

ChERS Diagnostics Examine Core Majority and Impurity Ion Velocity Distributions


Charge Exchange Recombination Spectroscopy

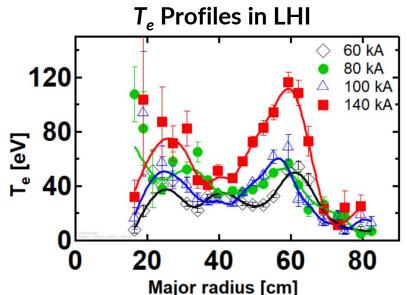
 DNB neutrals donate electrons to plasma ions, forming "hot" neutrals in excited states

$$H^0 + A^{Z+} \rightarrow H^+ + A^{(Z-1)^+}(n,l)$$

- Excited neutrals decay, emitting photons
- DNB illuminates a chord of plasma with signal
- Signal is subject to doppler shifting/broadening
- Each photon samples the local velocity distribution
- Signals fit for T_i and v_{φ} measurements

Example mChERS Data from TAE's C-2W (Similar Plasma Parameters to PEGASUS-III)

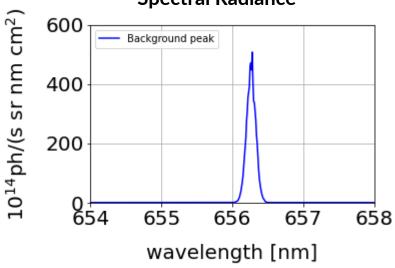
Plasma parameters/stability impact measurement quality:

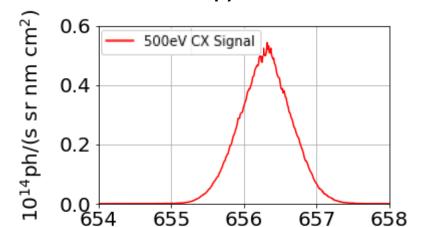

- Signal intensity proportional to ion density
- Low $T_i \rightarrow$ large overlap with background peak
- Signal and background must be constant through exposure

Majority (Deuterium) ChERS in an LHI Plasma

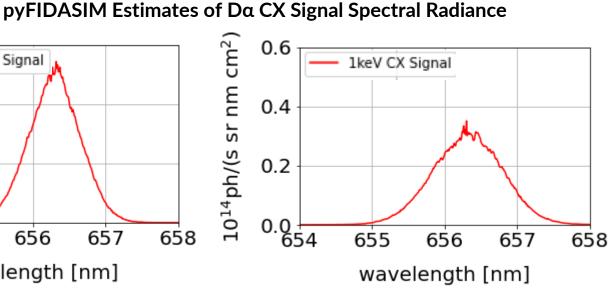
Visible Imaging Shows LHI Plasma Edges are Bright

LHI Phase Ohmic Phase

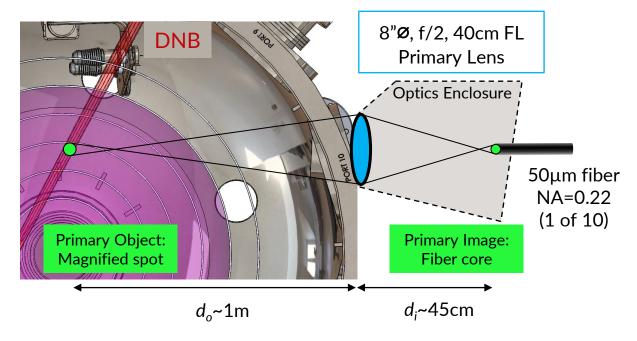

- Neutral fueling from injectors inherent to LHI
- Strong Dα radiation in edge
- Low-density plasmas, fewer photons, small signal
- Signal/Background ratio constrains dynamic range
- Signal/Background most challenging aspect
- Signal may be extracted with long, stable exposures
- DNB-ON exposure for charge exchange (CX) signal
- Subtract background, equivalent DNB-OFF exposure


mChERS Diagnostic requirements:

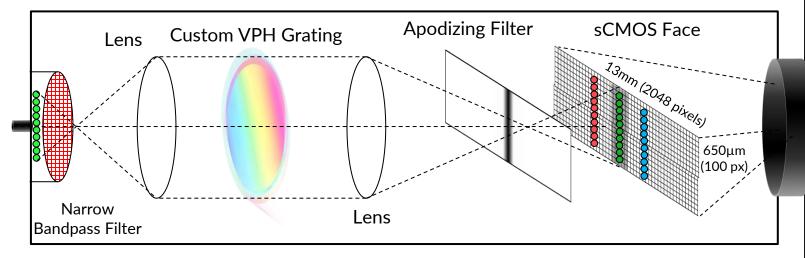
- $50ev < T_i < 2keV$, ~10eV resolution
- ~1ms integration times
- Spatial binning < 1cm


Majority Charge Exchange (CX) Signal Evaluated with pyFIDASIM

wavelength [nm]



- Measured radiance used to predict Dα background peak in PEGASUS-III
- Instrumental broadening determines width of narrow peak
- Spectrometer FWHM of **0.1nm** needed for T_i resolution, also limits instrument broadening

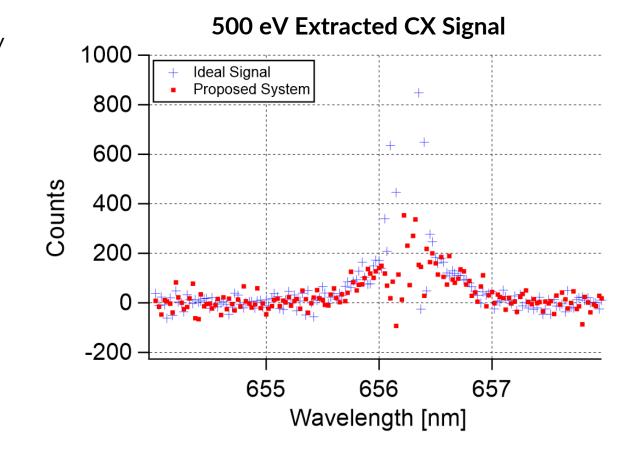

mChERS Detector requirements:

- Dynamic range > 100,000 to 1
- >1000fps for ~1ms measurements
- Sufficient area for multi-channel spectroscopy
- Minimal electronic noise

Conceptual Design of a Majority ChERS T_i Diagnostic

- Large lens maximizes collection
- 10 fiber array = spectrometer "slit"
- Dα bandpass filter reduces stray light
- Large lenses/grating match etendue of fibers
- Holographic grating maximizes efficiency, ~90%
- Bright background peak would saturate pixels
- Apodizing filter attenuates selected pixels' exposure

Spectrometer Enclosure

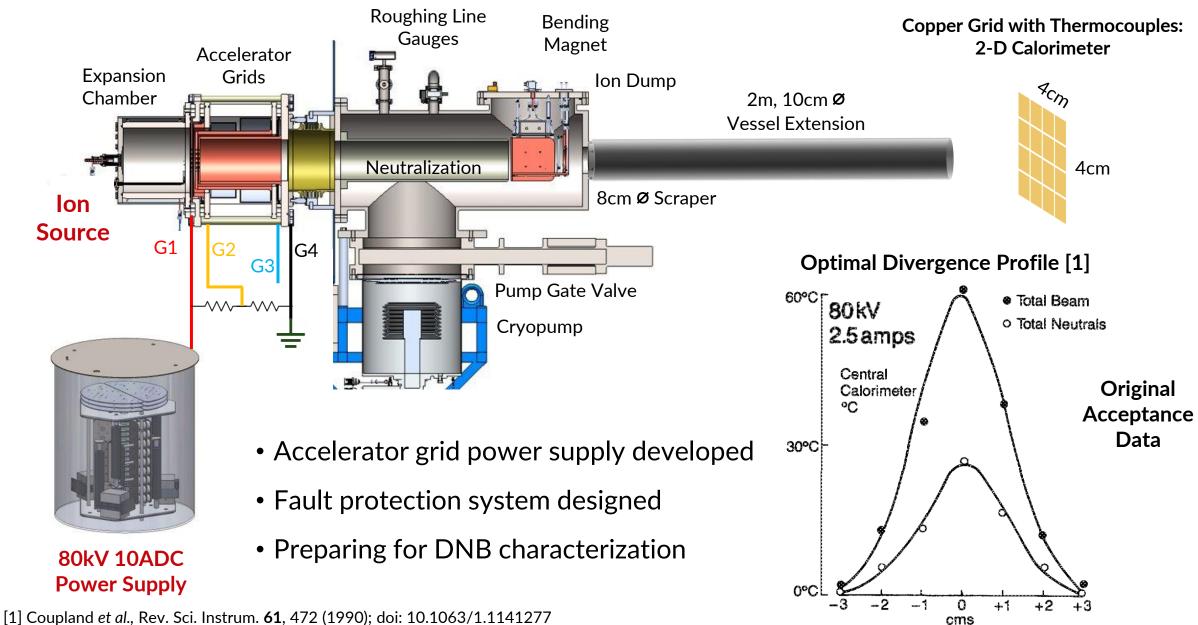

Andor Marana 4.2B-6 sCMOS

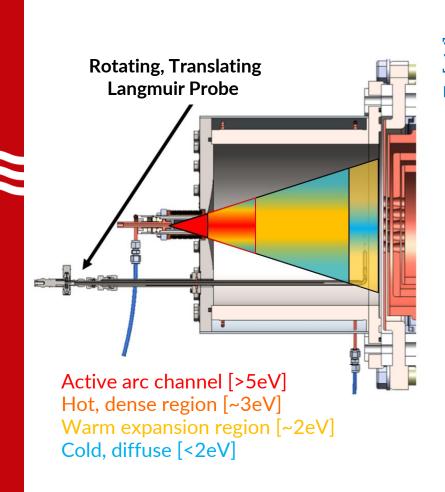
- 10 spatial channels at 1485fps
- Full vertical binning per channel
- High dynamic range, 34000 to 1
- Excellent quantum efficiency ~90%
- Low read noise, dark current

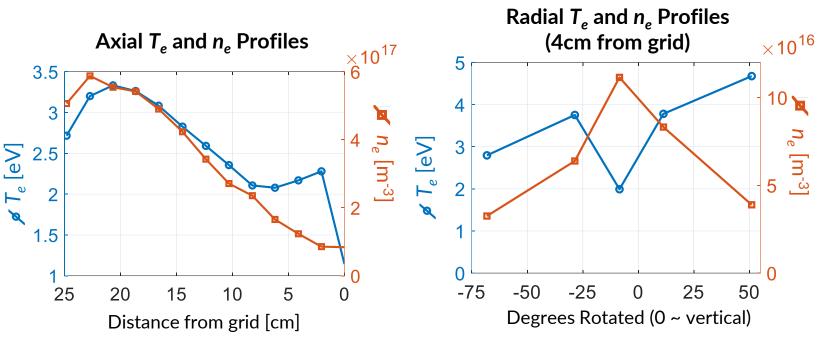
Modeling used to Evaluate Counts, T_i Resolution, Range

- 2.5A DNB, ~30% DNB attenuation, 50% photon efficiency
- $n = 0.5 \times 10^{19} \text{ m}^{-3}$, $T_i = 500 \text{ eV}$, $700 \mu \text{s}$ exposures
- Shot noise from signal and constant background
- Dark current, read noise applied
- Apodizing filter estimated, extends dynamic range ~10x

Low-T_i Signals Obscured by Background 600 500 400 Counts 300 200 100 -100 655.6 656.0 656.8 656.4 Wavelength [nm]

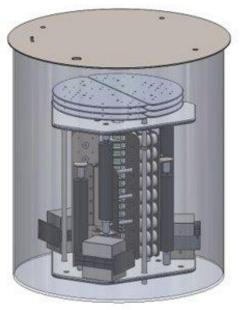

- Low-*T_i* data appear distinguishable
- Further analysis needed to determine if practical


Diagnostic Neutral Beam (DNB) Development Status



DNB Auxiliary Systems Installed, Ready for Extraction Test

Arc-Plasma Ion Source Characterized

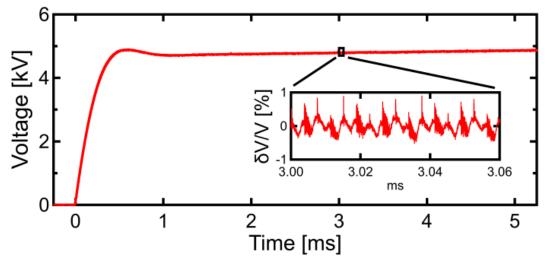


- Ion source optimized for high T_e , maximum stability
- ChERS measurements favor maximum current at ~40keV/amu
- Next, establish operating points for higher density
- Final step before HV extraction test

Programmable 80kV-10A-DC Power Supply Constructed

1:2 Transformers

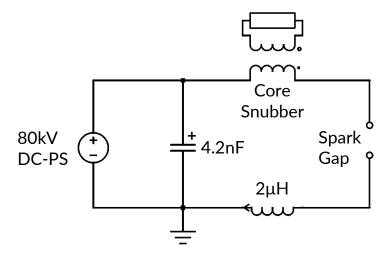
Power Supply in Steel Tank

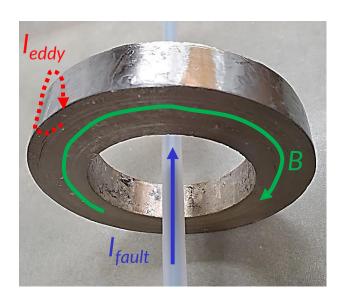


Resonant Tanks δ Diodes 0 Core Snubber 0 Current Limiter 0 Stray Capacitance 0 Clamp

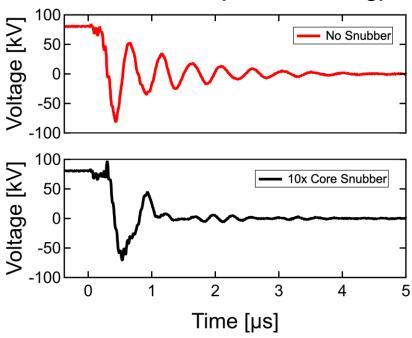
Simplified Schematic

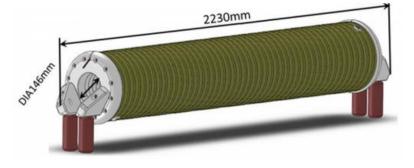
- RMS ripple < 0.2% demonstrated at 5kV
- <500µs ramp times
- Low stored energy in HV/filter stage
- HV system immersed in FR3 dielectric fluid
- Core snubber provides passive fault protection


Demonstrated Low-Ripple DC Output


Fault Protection for Delicate, High-Voltage Load Designed

Prototype core snubber tested


- Materials and toroid designs specified, procured
- Fault scenario replicated
- Energy dissipated at high dI/dt
- Data used to design full capacity system
- Dissipation capacity determined transmission stray C


Core Snubber Test Circuit

Snubber Cores Dissipate Fault Energy

Inspired by EAST Core Snubber

*Fei et al., Plasma Sci. Technol. **15**, 469 (2013)

*Jiang et al., Rev. Sci. Instrum. **87**, 123302 (2016)

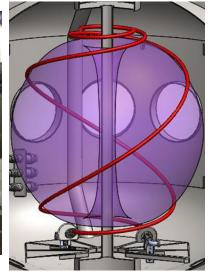
DNB Timeline and Research Directions

DNB Commissioning 2023

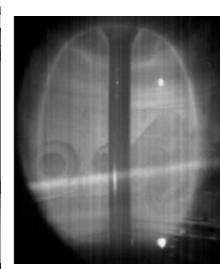
- Commission 80kV PS, establish high density operation of ion source
- Finalize control code, test extraction of DNB
- Verify acceptable DNB parameters, plan for deployment, design mChERS diagnostic
- Deploy DNB and construct diagnostic

Research Directions

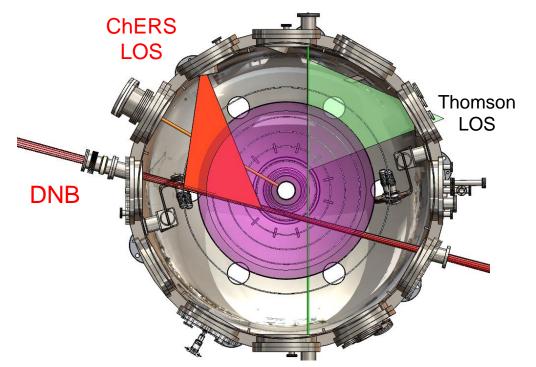
- Use helium injection, ChERS to determine T_i and v_{φ} profiles for LHI. scaling with B_{TF} , I_p , V_{LHI} vs. V_{inj}
- Develop mChERS system, determine majority T_i profile for LHI plasmas
- Study impact of ion heating on LHI performance, scaling with B_{TF} , I_p , V_{LHI} vs. V_{inj}
- Use T_i profile to refine understanding of LHI MHD equilibrium


Summary

➤ PEGASUS-III will advance understanding of non-solenoidal tokamak current drive, performance scaling of LHI


- A DNB and diagnostics are being developed for spatially localized internal measurements of ion temperatures, bulk flow velocities
- Internal measurements provide constraints on LHI equilibrium reconstructions, enable study of anomalous ion heating and bulk flow

LHI Array



Tokamak Plasma

PEGASUS-III Machine

