The New Pegasus-III Experiment and Plans for RF Heating and Current Drive

S.J. Diem, M.W. Bongard, R.J. Fonck, J.A. Goetz, B.A. Kujak-Ford, B.T. Lewicki, M.D. Nornberg, A.C. Palmer, J.A. Reusch, A.C. Sontag, G.R. Winz and the Pegasus-III Experiment Team

APS-DPP Annual Meeting

11 November 2020

Elimination of Solenoid Greatly Simplifies ST Design But Requires Non-inductive Startup Pathway

- Future ST designs call for solenoid-free operation
 - Nuclear ST: no OH due to shielding/cost
- PEGASUS-III Mission: Solving solenoid-free startup for STs (and ATs)
 - Advanced Local Helicity Injection
 - Floating Coaxial Helicity Injection
 - RF assist, sustainment and startup
 - Compatibility with NBI heating and current drive
- Research program will provide a predictive understanding of these solenoid-free techniques
 - Extrapolatable techniques to next-step devices

PEGASUS-III features:

- No solenoid
- 4x toroidal field
- Advanced control
- Expanded diagnostics

Projecting LHI to High Performance Facilities Requires Tests at Increasing B_T

- Critical physics issues:
 - Confinement tests: linear (OH), saturated (L-mode), open field line
 - Turbulence-driven dynamo current drive mechanisms

Taylor Limit

$$I_p \leq I_{TL} = I_{inj} \Psi / \psi_{inj}$$

- Utilize two injector configurations
 - Two arrays of 2x4 cm² circular injectors
 - Advanced non-circular "Kama" injector –
 monolithic port mounted injector
- Goal: routine experiments at ~ 0.3 MA

Comparative Studies of Helicity Injection Techniques Will be Explored at Increased B_T Pegasus-III

- Novel, flexible CHI system in dedicated experiment
- Address critical physics
 - Flux conversion efficiency
 - Role of footprint in efficiency
 - Comparison and synergies with other methods
 - Role or advantages of non-axisymmetric current flows & structures
- Validate projection to ≥1 MA system
 - Test bubble burst and Taylor limit up to 0.3 MA
 - Vary flux distribution across electrodes

CHI requires auxiliary heating to raise T_e(0)

"Bubble burst" criterion

$$I_{inj} \ge \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}}; C \sim O(1)$$

RF Heating/CD to be Explored as Component of Non-solenoidal ST Startup Program

- RF auxiliary heating and CD system will enable long-term scientific campaigns
 - Synergistic effects for improving helicity injection and RF current drive efficiency
 - Comparative tests of most major non-solenoidal startup techniques
 - Current profile tailoring
 - Handoff from non-solenoidal startup to non-inductive sustainment utilizing reactor-relevant tools
- Initial experimental campaigns focus on RF coupling to overdense plasmas
 - EBW heating capability may synergistically enhance LHI induced I_p current by lowering resistivity
- Long term develop RF-only startup

Initial EBW Program Seeks to Explore Synergies

- Relative low B_T, high n_e of STs necessitates use of EBWs for fundamental absorption
- EBW heating: synergistically enhance LHI induced I_D current by lowering resistivity
 - 500 kW EBW RF, 8 GHz
- T_e increases compatibility with non-inductive sustainment (i.e. NBCD)
- T_e control as test of confinement models

Initial EBW Program Seeks to Explore Synergies

Collaboration between ORNL, ENEA and UW-Madison

- Relative low B_T, high n_e of STs necessitates use of EBWs for fundamental absorption
- EBW heating: synergistically enhance LHI induced I_p current by lowering resistivity
 - 500 kW EBW RF, 8 GHz
- T_e increases compatibility with non-inductive sustainment (i.e. NBCD)
- T_e control as test of confinement models

Klystrons powered by new DC-DC resonant supplies

Demonstration of EBW CD for Future Sustainment Studies

8 GHz absorption at fundamental EC

- \sim 400 kW injected into decaying HI-produced plasma (B_T = 0.339 T)
- Poloidal launch angle of 30 above midplane
 - $n_{\parallel} = -0.55 \text{ to } -0.45$
- Increasing T_e can increase current drive efficiency

Modeling shows current drive peaked off-axis

- $I_{EBW} \sim 30 \text{ kA comparable to } j(0) \text{ from LHI}$
- Perform current profile tailoring
- Varying B_T can be used to change absorption location

GENRAY EBW Ray-tracing

2nd Phase RF: add ECH/ECCD for HI Synergies and Direct RF Startup

Heating during post-CHI decay phase

Significantly increase T_e*

LHI coupling:

- T_e heating during LHI for increased CD efficiency
- Post-LHI heating for subsequent heating and CD

Pure-RF startup scenarios

- ECH/ECCD initiation and current channel formation
- Subsequent EBW heating and CD for full I_p, n_e growth

Exploit 2nd harmonic EC resonance

- Significant EC absorption can occur at 2nd harmonic
- Density cutoff $< 5x10^{18}$ m⁻³, accessible during startup

R [m]

Mode	01	X1	X2	O 2	Х3
Frequency	Ω_{ce}	Ω_{ce}	$2\Omega_{ce}$	$2\Omega_{\sf ce}$	$3\Omega_{ce}$
Density	n ₀₁	2n ₀₁	2n ₀₁	4n ₀₁	6n ₀₁

ECH Modeling Shows Paths to High Absorption During LHI

- LHI-produced targets are accessible to ECH
 - − Wide range of <n_e> available
- Peak 15% first pass absorption possible for T_e(0) = 15 eV
 - Single ray launch injection angle scan via GENRAY
 - Launcher at z = 5.5 cm, poloidal angle = -15°, toroidal angle 1°
 - Applicable to CHI targets
- First pass absorption reaches 70% for $T_e(0) = 300 \text{ eV}$
 - Efficacy of ECH dependent on confinement scaling of $T_e(0)$ with B_T , n_e , etc.
- Initial ECH modeling shows promising capabilities

Long-term Plans for RF Seek to Enhance Non-solenoidal Tools on the Pegasus-III ST

- Bold tests of non-solenoidal ST startup using reactor relevant techniques
 - Local Helicity Injection
 - Coaxial Helicity Injection (transient, sustained)
 - EBW assist and sustainment
 - Future: EC heating and current drive
- RF auxiliary heating and CD system will enable long-term scientific campaigns
 - Synergistic effects for improving helicity injection and RF current drive efficiency
 - Comparative tests of most major non-solenoidal startup techniques
 - Current profile tailoring
 - Handoff from non-solenoidal startup to non-inductive sustainment utilizing reactor-relevant tools
- Also allows unique studies of near unity β_T , low-A physics

Pegasuas-III is Under Construction

- **ZP06.00001**, "Integrated Studies of Solenoid-Free Tokamak Startup with Pegasus-III", M.D. Nornberg, et al.
- **ZP06.00002**, "CHI Research on Pegasus-III", R. Raman, et. al,
- **ZP06.00003**, "Magnetic Activity During LHI Startup and Sustainment", N.J. Richner, et. al.
- **ZP06.00004**, "Ohmic Sustainment of Local Helicity Injection Initiated Plasmas on the Pegasus ST", C. Pierren, et. al.

Complete electromechanical design & analysis of TF system

New cascaded inverter in fabrication to drive LHI, S-CHI systems

Assembly of 240 MVA power systems underway

TF center rod, conductors, & return structures delivered

Backup

Projecting LHI to high-performance facilities requires tests at increasing B_T

- Critical physics issues:
 - Experiments to develop test of linear vs. saturated vs. open field line confinement
 - Role of turbulence driven dynamo current drive mechanisms
- Utilize two injector configurations
 - Two arrays of 2x4 cm² circular injectors
 - Advanced non-circular "Kama"
 injector monolithic port mounted
 injector
- Goal: routine access to 0.3 MA plasmas

$$I_p \le I_{TL} = I_{inj} \Psi / \psi_{inj}$$

Comparative studies of helicity injection techniques will be explored at Increased B_T PEGASUS-III

- Novel, flexible CHI system in dedicated experiment
 - Studies of CHI with dedicated flexible experimental system
 - Expand investigation of helicity space
 - Validation of MHD simulations
 - Flux conservation efficiency
 - Comparison and synergies with other methods
- Validate the design criteria used to project a current to 1 MA system
 - Designed to satisfy the bubble burst criterion and the one line to produce 100-300 kA plasma
 - Explore importance of flux distribution across the elebroadening the flux across the outer electrode
- Direct comparison to LHI at similar condition evaluation of scaling possibilities of each tector

"Bubble burst" criterion

$$I_{inj} \ge \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}}; C \sim O(1)$$

Non-solenoidal startup remains a critical challenge for spherical tokamaks

- Future ST designs call for solenoid-free operation
 - Nuclear ST designs generally prohibit OH due to shielding/cost
 - Small solenoid considered as a fallback; insufficient for I_p ramp-up
- OH solenoid removal simplifies tokamak design
 - Potential cost reduction
 - More space for inboard shielding/blanket
 - Lower electromechanical stress
- Requires physics understanding of optimal nonsolenoidal tokamak startup

No/small OH HTS ST-FNSF/Pilot Plant Shielding needs severely constrain OH viability

J.E. Menard, Phil. Trans. R. Soc. A 377, 20170440 (2019)

28 GHz X2 ECH feasible at full B_T in Pegasus-III

Poloidal Cross Section

Toroidal Cross Section

GENRAY 48-ray bundle trajectory shown for $T_e(0) = 150 \text{ eV}$, 42% first pass absorption

Comparative studies of helicity injection techniques will be explored at Increased B_T Pegasus-III

- Explore CHI physics at $B_T = 0.6 \text{ T}$
 - Expand investigation of helicity space
 - Validation of MHD simulations
 - Flux conservation efficiency
 - Comparison and synergies with other methods
- Direct comparison to LHI at similar conditions will allow evaluation of scaling possibilities of each technique

Taylor Limit

$$I_p \leq I_{TL} = I_{inj} \Psi/\psi_{inj}$$

"Bubble burst" criterion

$$I_{inj} \ge \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}}; C \sim O(1)$$

65 mWb Connecting CHI Electrodes

Projecting LHI to high-performance facilities requires tests at increasing B_T

- Critical physics issues:
 - I_p gains with increased Taylor limit
 - Initial tokamak formation
 - Scaling of core confinement
 - Current drive mechanisms
 - Current stream stability
- Advanced geometery i.e. non-circular "Kama" injector designs may lead to higher performance
 - Increase A_{inj} \rightarrow lower V_{inj} for reduced PMI
 - Narrow current channel (w)
 - Increase I_{ini}
 - Single LFS port assembly
 - Programmable $V_{inj}(t)$ capability
- 0-D model projects $I_p > 300 \text{ kA}$ at 50% of Pegasus-III max toroidal field

2nd Phase RF: add ECH/ECCD for HI Synergies and Direct RF Startup

- Low n_e startup plasma accessible to harmonic ECH, ECCD
 - During helicity injection, densities favorable to ECH, ECCD for harmonic absorption
 - EC waves propagate in vacuum, readily couple to plasma and are absorbed near EC resonance locations
- Pegasus-III maximum $B_T = 0.5 \text{ T at R}_0 = 0.46 \text{ m}$ provides access to 2^{nd} harmonic EC resonance
 - Density cutoff $< 5 \times 10^{18}$ m⁻³, accessible during startup
 - Significant EC absorption can occur at 2nd harmonic

Mode
Frequency
Density

	01	X1	X2	O2	Х3
/	Ω_{ce}	Ω_{ce}	$2\Omega_{ce}$	$2\Omega_{ce}$	$3\Omega_{ce}$
	n ₀₁	2n ₀₁	2n ₀₁	4n ₀₁	6n ₀₁

