Integrated Studies of Solenoid-Free Tokamak Startup with PEGASUS-III

M.D. Nornberg,

M.W. Bongard, M.T. Borchardt, S.J. Diem, J.A. Goetz, R.J. Fonck, B.A. Kujak-Ford, B.T. Lewicki, A.C. Palmer, J.A. Reusch, A.C. Sontag, G.R. Winz

62nd Annual Meeting of the APS
Division of Plasma Physics
Virtual Meeting

9–13 November 2020 Presentation ZP06.00001

PEGASUS Phase III

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI), Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

PEGASUS-III Will Provide a Dedicated US Platform for Solenoid-Free Startup Development

- Major upgrade to present Phase II PEGASUS facility*
- Compare / contrast / combine concepts for solenoid-free startup in a dedicated facility
 - Local Helicity Injection
 - Coaxial Helicity Injection (Transient, Sustained)
 - RF assist and sustainment (EBW studies presently, ECH, ECCD in future)
 - Compatibility with NBI heating and current drive
- Goal: develop validated concept, equipment for 1 MA startup on NSTX-U and beyond

*Garstka et al., Nucl. Fusion **46** S603 (2006)

Non-Solenoidal Startup is Critical for the Spherical Tokamak

- Future ST designs call for solenoid-free operation
 - Nuclear STs generally minimize OH due to shielding/cost
- OH solenoid removal simplifies tokamak design
 - Potential cost reduction
 - More space for inboard shielding/blanket → Critical for ST
 - Reduce PF system requirements
 - Lower electromechanical stresses
- Solenoid-free startup techniques may offer tools for modifying J(R)

No / small OH HTS ST-FNSF / Pilot Plant

J.E. Menard, Phil. Trans. R. Soc. A 377, 20170440 (2019)

PEGASUS-III Upgrades Enable Comparative Study of Multiple Startup Methods

PEGASUS

- Solenoid-free central column
- Stronger, high-*B*_T assembly
- Active divertor coils
- CHI, RF, and next-gen LHI
- Expanded diagnostics

Parameter	PEGASUS	PEGASUS-III
I_{TF}	0.288 MA	1.15 MA
N_{TF}	12	24
ψ_{sol} (mWb)	40	0
R_{inner} [cm]	5.5	7.0
TF Conductor Area [cm²]	13.2	72
$B_{T,max}$ [T] at $R_0{\sim}0.4$ m	0.15	0.58
B_T Flattop [ms]	25	50-100
A	1.15	1.18

Helicity Injection and RF startup

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI), Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

Helicity Injection Techniques Can Initiate and Drive Tokamak Plasmas

• Current drive increases the amount of poloidal flux ψ_p linked with the toroidal flux created by external coils (magnetic helicity) $K = \int_V \mathbf{B} \cdot \mathbf{A} \, dV$ $\frac{dK}{dt} = -2 \frac{\partial \psi}{\partial t} \mathbf{W} = 2 \int_V dt \, \mathbf{R} \, dt = 2 \int_V \mathbf{R} \, dt \, \mathbf{R} \, dV$

$$\frac{dK}{dt} = -2\frac{\partial\psi}{\partial t}\Psi - 2\int\limits_{S}\Phi B\cdot dS - 2\int\limits_{V}\eta \textbf{\textit{J}}\cdot \textbf{\textit{B}}dV$$
AC Helicity Injection | DC Helicity Injection | Helicity Dissipation |

• Plasma current scales with injector voltage, area, and location

$$I_{p} = \frac{A_{p}V_{LHI}}{2\pi R_{0}\langle \eta \rangle} \approx \frac{V_{inj}A_{inj}}{2\pi R_{0}\langle \eta \rangle} \left(\frac{B_{inj}}{B_{0}}\right)$$

• Taylor relaxation limits I_p to lowest energy state that conserves K

$$\lambda \equiv \frac{\vec{J} \cdot \vec{B}}{B^2}$$
 $\bar{\lambda}_{plasma} \leq \bar{\lambda}_{edge} \rightarrow I_p \leq I_{inj} \frac{\phi_p}{\psi_{inj}}$

- LHI: Local, smallaperture sources
- CHI: Large, coaxial electrodes

Poloidal Flux

Local Helicity Injection: Edge-localized Sources Inject Current Streams That Reconnect, Form Tokamak-like Plasma

Local plasma

sources create

helical plasma

streams along

field lines

grows

LHI Startup Scenario Temporal Evolution

Current streams reconnect and relax to a tokamak-like state, current

Decaying tokamak plasma after injectors terminate

LHI Produces High- $I_n = 0.2 MA$ Tokamak Plasma $(I_{ini} \leq 8 \text{ kA})$ 200 Current [kA] 150 100 50 20 24 ms

Battaglia et al., Nucl. Fusion **51** 073029 (2011) Perry et al., Nucl. Fusion 58, 096002 (2018)

Coaxial Helicity Injection: Axisymmetric Electrodes Drive Poloidal Current Into A "Magnetic Bubble"

CHI via Biased Vacuum Vessel Segments [NSTX, HIT-II]

Drive sufficient current along open field lines to overcome field line tension and allow the injected poloidal flux to expand into the vessel

Two techniques:

- Transient (T-CHI): stretch connected flux and quickly force reconnection to create closed flux by terminating injection
- Sustained (S-CHI): build up connected flux by continued current drive

"Bubble burst" condition requires threshold $J \times B$ stress across the current layer to overcome field line tension

$$I_{inj} = \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}}$$

T-CHI in NSTX

R. Raman et al., Nucl. Fusion **53** (2013) R. Raman et al., Fusion Sci. Tech. **68** (2015)

RF Heating and Current Drive Can Enhance Helicity Injection

- RF heating can work synergistically with LHI/CHI by:
 - Lowering resistivity to reduce helicity dissipation
 - Freezing the low-inductance helicity-driven current profile
 - Providing J(R) tailoring for improved MHD stability
 - Lengthening the slowing down time of fast ions for NBCD
- PEGASUS-III will explore these effects with a 0.5 MW
 8 GHz electron Bernstein wave (EBW) RF system
 - Suitable for overdense ST plasmas for heating & CD
 - Significant heating capability (0.4 MW)
 - Modest current drive capability for RF sustainment tests
- Future: expand RF capability to include 28 GHz ECH/ECCD
 - RF heating and current drive at higher B_T
 - Enhance EBW CD efficiency
 - Direct RF startup studies

Range of EBW Absorption Locations Available in PEGASUS-III

Electron Bernstein Waves Propagate in Overdense Plasmas

- Electron Bernstein waves (EBW) are hot plasma waves:
 - Perpendicularly propagating, $k_{\parallel}=0$
 - No density cutoff
 - Longitudinal, electrostatic waves
 - Cannot propagate in vacuum, requires coupling
- Coupling efficiency depends :
 - Density gradient
 - Magnetic field pitch
- Provide a means of localized heating and current drive in helicity injected plasmas

Direct X-mode launch possible from inboard side

Summary of Recent Work on PEGASUS

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI),
 Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

Recent Work on PEGASUS Has Refined the Understanding of LHI-Driven Startup Plasmas

 I_p Scaling Assuming Linear Ohmic or Stochastic Confinement Regimes

 $Z_{\rm eff}$ Scaling with I_p Determined From Volume-Averaged Resistivity

Helicity Injection limits:

 I_p increased with B_T by raising Taylor-limit early in current ramp

Confinement:

Predictive model requires $\eta(T_e)$ evolution; at low B_T typical turbulent scale length much larger than \tilde{B} scale length; suggests cross-field transport may be important

Plasma Material Interaction:

 $\langle Z_{eff} \rangle$ ~ 1 derived from plasma neoclassical conductivity

Edge-localized \tilde{B} Scales with I_p and Has Co-current Magnetic Helicity From MHD to Kinetic Scales

Broadband \tilde{B} radial extent is $\sim \rho_s$ with radial correlation lengths only 1-3 cm and evidence of shorter correlation lengths for higher frequencies

Only the highest-frequency (smallest scale) fluctuations scale with achieved I_n

Both broadband and kineticscale fluctuations have -90° cross-phase indicating cocurrent helicity consistent with Taylor's hypothesis

Observations Suggest Sustained Injection Has Region of Magnetic Reconnection in Edge with Quiescent Core

Stream injection region

Force-free current streams in dynamic helical equilibrium

Reconnection Region

- Localization of high-frequency B
 and anomalous ion heating*
- Good confinement indicated by co-location with pressure gradient

Confinement Region

Tokamak-like toroidally-averaged closed flux surfaces

Multi-Zone LHI Confinement Hypothesis

Overlapping Regions of Confined, MHD Turbulent, and Force-Free Plasmas in LHI

^{*} Burke et al., Nuclear Fusion **57** 076010 (2017)

LHI Handoff to Ohmic Drive Shows Benefits From MHD Stability and Core Auxiliary Heating

OH: Saturated n=1 mode

LHI-OH: Stable n=1 mode and quiescent period

Edge LHI establishes low ℓ_i targets that maintain good MHD stability through transition to ohmic induction

LHI/OH overlap, T_e maintained

Ohmic induction during helicity injection provides additional core heating

Suggests synergies with core auxiliary heating

C. Pierren ZP06.00004 Fri. 9:30AM

PEGASUS III Experimental Program

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI), Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

Projecting LHI to Larger Facilities Requires Tests at Increasing B_T

Physics

- Realize the increased I_p expected with higher B_T
- Test projection of core confinement models
- Further explore role of short-wavelength fluctuations in current drive and relaxation mechanisms
- Determine role of current stream instabilities in helicity transport
- Provide access to RF resonances for auxiliary heating and CD

Technology

- Optimized geometry for reduced V_{inj} and improved reliability
- Exploit fueling and V_{inj} control for effective loop voltage control
- Minimize need for, duration of injector conditioning
- Optimize injector control & material selection to minimize PMI
- Develop long-pulse capabilities

0-D Power-Balance Projections for LHI on PEGASUS-III

First LHI Experimental Campaigns Will Employ Complimentary LHI Systems

Two Arrays of 2×4 cm² Circular Injectors

- Proven injector design, high confidence in demonstrating 300 kA current at 0.3 T
 - Total $A_{ini} = 16 \text{ cm}^2$; $I_{ini} \le 16 \text{ kA}$, 4 kA/injector
- Develop MHD-stable startup scenarios to handoff to noninductive sustainment
- Study helicity drive via dynamo & kinetic mechanisms due to flux rope merging and beam instabilities
- Test proposed transport models to determine $\langle T_e \rangle$ evolution
- Quantify impurity sourcing with increasing injected power

Advanced Non-circular Injector in PEGASUS-III

- Port mounted monolithic injector appropriate for fielding on NSTX-U and beyond
 - $-A_{inj} = 16 \text{ cm}^2$, $I_{inj} \le 8 \text{ kA}$, $w_{inj} = 1 \text{ cm}$
- Smaller radial width optimizes helicity drive and Taylor-limit

$$I_{p,TL} = I_{inj} \frac{\phi_p}{\psi_{inj}} \propto \sqrt{\frac{I_{inj}I_{TF}}{w_{inj}}}$$

- Anode fueling may allow changing I_{inj} stability characteristics
- Study changes to helicity drive due to current sheet geometry

PEGASUS-III CHI Studies Enabled by A Novel Dual-Electrode CHI System

• Quantify and validate design criteria for high- I_p CHI

- Dual insulated electrodes: no vessel break required
- Support CHI-driven plasmas to machine PF limits ($l_p \sim 0.3$ MA)
- Segmented design to test axisymmetry of current extraction
- Explore the importance of the flux distribution across the electrodes by broadening the flux across the outer electrode

Evaluate role of impurities in T-CHI, S-CHI

- Demountable electrode segments: test refractory material
- Confinement impact in S-CHI scenarios

Explore the continuum of injector area

- CHI maximizes injector area in comparison with LHI
- By constraining the active segments of the electrode assembly we can test effects of non-axisymmetry on relaxation physics.

3D Sketch of Electrode Plate Concept

New Flexible Divertor Fields Enable Tests of T-CHI & S-CHI Performance with Footprint Separation

Ability to modify flux distribution across the outer electrode allows tests of bubble burst scaling and Taylor limit

$$I_{inj} = \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}} \qquad I_p < I_{inj} \left(\frac{\phi_p}{\psi_{inj}}\right)$$

Predictions of the extracted injector current from the bubble burst scale strongly with d, ψ_{ini}

Flux conversion efficiency in T-CHI and flux amplification in S-CHI both scale with *d*

T-CHI power supply provided by U. Wash S-CHI will use LHI cascaded multi-level invertor

| Flux loops

Initial EBW Heating Experiments Seek to Enhance LHI & CHI Current Drive

Experimental target of injecting 400 kW

- Source frequency of 8 GHz launched into decaying LHIproduced plasma ($B_T = 0.339 \text{ T}$)
- Poloidal launch angle of 30 above midplane $n_{\parallel} = -0.55$ to -0.45
- Current drive comparable to on-axis current density from LHI
- Varying B_T can be used to change absorption location

Test EBW drive concurrent with LHI

- Increasing T_e can increase current drive efficiency
- Explore tailoring the current profile

S.J. Diem NO07.00002 Wed. 9:30AM

Klystrons supplied by DC-DC resonant supplies developed for DNB

PEGASUS-III Upgrades

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI),
 Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

Central to PEGASUS-III mission is an Increased Toroidal Field, Requiring a New Center Column, Support Assembly, and TF Return Conductors

 New, 24 turn toroidal field bundle and center column without central Ohmic solenoid is designed for up to 0.6 T

Displacement at 20° C $B_T \sim 0.6T$ (mm) 0.2

Complete electromechanical design & analysis of TF system

Displacement at 40°C

Flex joint relieves thermal stresses while opposing magnetic stresses

TF center rod, conductors, & return structures delivered

Expanded Set of Programmable Switching Power Amplifiers to Supply 240 MVA for Electromagnets

Reconfigured Switching Power Amplifiers

- 32 independent 4 kA 900V IGBT for coils
- Expansion to 40 units planned
- Replaced and expanded stored energy
 - 3.0 MJ for Toroidal Field Power Supply
 - 1.7 MJ for Poloidal Field & Divertor Power Supplies
 - 1.7 MJ for LHI Arc & Bias Power Supplies
- Fully digital facility timing, control, and protection
 - 16 coil set feedback controllers, 15 kHz PID loop rate
 - FPGA-generated timing and triggering distribution
 - Continuous hardware fault protection on $< 10 \mu s$ timescales

New Cascaded Multilevel Inverter Designed for Active Control of the Effective Helicity-Driven Loop Voltage

Integrated Stored Energy, IGBT, and IGCT Bridges

- CMLI inverter to drive 4 kA at 1 kV with sub-ms V_{out} control
 - 1800 V from IGCT system +/- 900 V(t) on fast timescales from corrector
- 16 MVA planned for initial experiments

80 kV Diagnostic Neutral Beam Provides New Diagnostic Capabilities

- DNB from PBX received from PPPL
- Ion source redesigned and achieved target n_e , T_e to draw 3 A at 80 kV
- Enables several advanced diagnostics:
 - Core |B| measurements
 - Impurity ion dynamics (T_i, v_i, n_z)
 - Density profile information through beam attenuation

Diagnostic Set Focuses on Characterizing the Nature of Helicity Injection and the Tokamak Plasmas Produced

Diagnostics based on mission-critical requirements

Kinetic equilibrium reconstruction

Helicity dissipation

MHD & kinetic activity associated with current drive & magnetic relaxation

Plasma material interaction with injector surfaces

New systems under design

Neutral Beam emission diagnostics for magnetic field, ion dynamics

Impurities [Bolometry, higher-resolution VUV spectroscopy (SPRED), VB]

Spectroscopic measurements of arc plasmas (Stark Broadening) IR imaging

Insertable probe arrays
3D magnetics [Hall, \dot{B}]
Langmuir, Mach

Flux footprint measurements and imaging for CHI

RF Probe and diagnostics to measure absorption & heating

SUMMARY

- PEGASUS-III: Motivations for developing non-solenoidal startup techniques
- Overview of approaches to plasma startup using Local Helicity Injection (LHI), Coaxial Helicity Injection (CHI) and Electron Bernstein Wave (EBW) heating & current drive
- Summarize recent work developing LHI on PEGASUS
- Outline the upcoming experimental program following upgrade activities
- Updates on the facility upgrades

Exciting Physics Anticipated From Upcoming Experiments

Realize predicted gains in I_p and develop attractive scenarios for non-inductive sustainment

Determine how helicity drive & transport due to MHD & kinetic scale turbulence change with B_T

Develop a transport scaling model for predictive modelling of helicity injection

Field a flux-conforming monolithic injector as envisioned for large facility

1.1 1.0 0.9

Quantify and mitigate plasmamaterial interactions

1.0 - 0.05 0.25 0.2 - 0.09 - 0.01 0.3 0.25 0.2 - 0.00 0.6 - 0 Demonstrate improved

Demonstrate improved Coaxial Helicity Injection performance by narrowing flux footprint

Explore differences in reconnection & relaxation between flux ropes & current sheet

Use EBW to heat helicitydriven plasmas to reduce dissipation & tailor the current profile

Floating Cathode Shield

Conical Frustum Cathode

PEGASUS-III is Now Under Construction

Advanced non-circular injector design fabricated & assembled

T-CHI power supply built (Univ. Washington collaboration)

Complete electromechanical design & analysis of TF system

New cascaded inverter in fabrication to drive LHI, S-CHI systems

