

Abstract

Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained by a magnetics set consisting of internal and external fluxloops, a poloidal array of B coils, and a diamagnetic loop. Pulse height analysis using a CCD detector will give a timeresolved electron temperature profile with a shotwise spatial scan. A tangentially viewing bolometer array measures profiles of radiated power. A 280 GHz single-chord microwave interferometer is used to measure line-averaged density, while a CCD-based visible bremsstrahlung array gives an approximate density profile. SPRED provides an impurity spectrum between 10 - 110 nm at 5 kHz. MHD activity is characterized by Mirnov coil arrays and a 19 channel poloidal soft x-ray array. The proposed next generation of diagnostics includes time-evolving density, temperature and current profiles using active neutral beam spectroscopy.

Overview

 Pegasus has an extensive set of magnetics diagnostics for equilibrium and stability analysis

• The first generation of plasma diagnostics measure <T_e>, N_eI, P_{rad}(r,t) and plasma shape

 The proposed next generation of plasma diagnostics will give profile measurements

Magnetics used for Equilibrium Reconstruction & Mode Analysis

Internal Rogowski Coil for Ip

- Two coils installed for redundancy
- The core armor and cones induce current in the plasma Rogowski
 - A vacuum shot accounts for these induced currents and is subtracted to get an accurate plasma current

Current measured with plasma Rogowski for vacuum shot

- OH coil current used for subtraction
- --- currents measured with vac shot used for subtraction

Installed plasma Rogowski coil and protective steel foil

Diamagnetic Loop Used to Constrain Pressure

- For Pegasus, B_{tor} due to plasma is relatively large.
 - Alignment to ± 1 mm is adequate.

 A compensation loop is used to remove signal noise due to TF switching transients

Schematic Layout of Mirnov Coils

- "High-Res" Core Mirnov Coils (21)
- Poloidal Mirnov Coils (22)

- LFS Toroidal Mirnov Coils (6)
- HFS Toroidal Mirnov Coils (7)

Mirnov Coils Allow Full Mode Identification

- The 6-coil LFS toroidal array is used to obtain values of n
 - Uneven coil spacing allows for resolution up to n=12

Toroidal Mirnov Signals

- Spectral techniques are used to extract resonant frequencies and phase delays
 - Cross-power gives spectrum
 - Cross-phase gives phase shift

Soft X-Ray Array - MHD

- 19 channel poloidal array of photodiodes (courtesy of PPPL)
 - external kinks observed and correlate with the visible camera images
 - 2/1 covers large portion of the plasma
 - 5 mil Be filters are used to get rid of most of the edge radiation
 - Ni filters will be used next spring to kill off the edge radiation completely

SXR View of a plasma

Correlation between Mirnovs and SXR

Global Instabilities Visible on Camera

- DALSA 256 Camera
 - 1000 frames per second
 - 10 microsecond exposure/frame
 - 256x256 pixels
 - Local PC control

Shot 14701

270 GHz Single Chord Interferometer for Line Integrated Density

• UCLA Collaboration

Spectroscopic Measurement of Te up to 400 eV

- Ross filter system uses photodiodes to detect soft x-rays which depend heavily on Te
- MIST results indicate applicable range of T_e(0) for each species:

C: 70 to 150 eV

O: 150 to 400 eV

Ross Filters

- ullet Set of six diodes installed on PEGASUS for $T_{\mbox{e}}$ estimates
 - AXUV-100 diodes
 - 10 x 10 mm active area
- Filters isolate: Lyman- α line of each ion

CV 2000 Å Al, 2500 Å Ag, 1 μm CaF₂

CVI 4000 Å Al, 6000 Å V

OVII 5000 Å Al, 5000 Å Mn

OVIII 4000 Å Al, 4500 Å Fe

Time Resolved SXR Pulse Height Analysis: Te(t)

- Pulse Height Analysis systems measure SXR spectra
 - Individual photon energies are measured to reconstruct the plasma emissivity spectrum
 - This spectrum is used to estimate T_e
- A CCD is being developed as a time resolved PHA detector
 - Thousands of pixels => Thousands of detectors
 - Increased count rates (better time resolution possible)
 - High energy resolution

Monte Carlo Modeling indicates good statistics without pulse pile-up

PHA/CCD System on Pegasus

Mask used for time resolution

- Exposed rows are shifted behind the mask at \sim 80 µsec per row
- Rows remain behind mask until plasma extinguished, and are then read out
- The CCD/PHA system requires direct x-ray illumination of the CCD, therefore the chip must be place in machine vacuum
- A gold mask has been designed to add the capability of time resolution
- The split fraction of the camera is higher than expected
 - If this cannot be resolved, Si-drifted detectors may be used to get measurements of T_e in the keV range

Bolometers

• 16 channel photodiode array installed

Pinhole imaging aperture

Diodes and pre-amp assembly

View of Plasma

High Time Resolution VUV Survey Spectrometer

- SPRED VUV Survey Spectrometer
 - 10 110 nm spectral range measured simultaneously
 - single radial view of plasma
- New high -speed 1-D imaging detector
 - 2000 pixel 1-D camera (DALSA CL-C6)
 - VUV visible image intensifier/convertor lens coupled to 1-D camera
 - Up to 4800 frame/sec sample rate

 $\Delta t \sim 0.2$ msec/frame

Visible Bremsstrahlung: Z_{eff} and N_e profile

• Visible Bremsstrahlung emissivity sensitive to electron temperature Z_{eff} and n_e²

Slit frame transfer provides for time resolution

- Signal dominated by visible edge radiation
 - next generation will have improved filtering

Tangential SXR Plasma Imaging: j(R,t), P(R,t)

- Internal plasma measurements constrain equilibrium reconstructions and help determine j(R) profile
- Next generation of the SXR profile imaging system is in development
 - Direct soft x-ray illumination of the CCD chip
 - Ta mask used for time resolution
- See poster KP1.095 for more details

DNB Spectroscopy Provides a Variety of Internal Measurements

- In core plasma region, beam attenuation dominates the spatial variation of the H⁰, D⁰ line intensity, giving a simple local estimate of Ne
 - Use D_{β} line to minimize dependence of excitation rate on local plasma parameters
 - Use iterative solution to estimate the f_{ex} term and derive local $N_e(R,t)$ in the plasma periphery
- Can recover the plasma density profile with good accuracy, even with no knowledge of the plasma temperature profile

T_e(r,t) Estimates Available from He⁰ Beam Line Ratio Measurements

- Measurements past the magnetic axis are the key
 - At the outer edge, beam dynamics are in non-linear evolution
 - State populations are very sensitive to initial metastable fraction
 - Large differences seen in the ratios for different metastable fractions
 - Deeper inside the plasma, beam population has equilibrated
 - Line ratio is mainly sensitive to local temperature
 - Virtually no difference seen in the ratios for different metastable fractions

Future Work

• Thomson Scattering: Single point; spectrometer available; need laser and optics

Optics for the TS system

Detectors

- Li pellet injection
 - Measures the local magnetic field tilt infers the j(r) and q(r) profiles
 - Compliment the CCD soft x-ray imaging system

Summary

- Global parameters are constrained during equilibrium fitting by magnetics
 - poloidal fluxloops for geometry
 - diamagnetic loop for plasma pressure
 - plasma Rogowski for total plasma current
- The first generation of plasma diagnostics measure <T $_e>$, N $_e$ I, P $_{rad}(r,t)$ and plasma shape
- Next generation of diagnostics will provide time evolving density, temperature and current profiles
 - DNB spectroscopy
 - Thompson Scattering