Integrated Studies of Solenoid-Free Tokamak Startup (on the PEGASUS-III Experiment) R.J. Fonck, M.W. Bongard, J.A. Goetz, B.A. Kujak-Ford, B.T. Lewicki, M.D. Nornberg, J.A. Reusch, G.R. Winz and PEGASUS Group 20th International Spherical Torus Workshop ENEA – Via Enrico Fermi 45, Frascati October 28-31, 2019 ## Non-Solenoidal Startup is Critical for the Spherical Tokamak - Future ST designs call for solenoid-free operation - Nuclear ST designs generally minimize OH due to shielding/cost - OH solenoid removal simplifies tokamak design - Potential cost reduction - More space for inboard shielding/blanket → Critical for ST - Reduce PF system requirements - Lower electromechanical stresses - Solenoid-free startup techniques may offer tools for modifying J(R) No / small OH HTS ST-FNSF / Pilot Plant J.E. Menard, Phil. Trans. R. Soc. A 377, 20170440 (2019) # Several Solenoid-Free Startup Techniques Pursued Globally - Multiple methods have shown promise - Local helicity injection (LHI) - Coaxial helicity injection (CHI) - Radiofrequency plasma initiation, heating, and current drive - Poloidal field induction - Neutral beam current drive - Need a dedicated facility to develop understanding and scalability - Develop, validate predictive understanding - Provide sufficient runtime, experience - Comparative studies and exploit synergies - Establish routine startup tools PEGASUS HFS LHI $I_p \sim N_{turns} I_{inj}$ $I_p \gtrsim N_{turns} I_{inj}$ $I_p \gg N_{turns} I_{inj}$ #### RF Startup Experiments | RF
Method | Device | I_p [kA] | |---------------|----------|------------| | ECH + PF | DIII-D | 166 | | induction | JT60-U | 100 | | ЕСН | QUEST | 70 | | | DIII-D | 33 | | | KSTAR | 15 | | ECH +
LHCD | T-7 | 20 | | EBW | MAST | 73 | | | LATE | 15 | | LH | PLT | 100 | | | TST-2 | 25 | | | GLOBUS-M | 21 | NSTX Transient CHI # PEGASUS-III Will Provide a Dedicated US Platform for Solenoid-Free Startup Development - Compare/contrast/combine concepts for solenoidfree startup in a dedicated facility - Local Helicity Injection - · Discussed herein - Coaxial Helicity Injection (Transient, Sustained) - · See R. Raman, this meeting - EBW assist and sustainment (ECH, ECCD in future) - See S. Diem, this meeting - Future: NBI heating and current drive? - Goal: develop validated concept, equipment for 1 MA startup on NSTX-U and beyond - Construction underway, operational in 2020 **PEGASUS-III** # Local Helicity Injection (LHI) Routinely Used for Non-Solenoidal Startup on PEGASUS ST Non-Solenoidal, $I_p \le 0.2 \text{ MA} (I_{inj} \le 8 \text{ kA})$ - Edge current extracted from injectors - Relaxation to tokamak-like state via helicity-conserving instabilities ### Flexibility in LHI Current Injectors Location Validated • Comparable I_p via two methods LFS: Dominant Non-solenoidal Induction HFS: Dominant Helicity Injection Helicity input adds from all sources - LFS: Outer midplane injection - High R_{inj} → weak V_{LHI} - Dynamic shape → strong V_{IND} - HFS: Lower divertor injection - Low R_{inj} → strong V_{LHI} - Static shape → weak V_{IND} - Efficient LFS → HFS transfer - Aid high B_T relaxation - LFS geometry preferred for Pegasus-III and NSTX-U - Port mounted injector; avoid crowded divertor region - SC coils in future may influence this ## LHI Startup Transitions Smoothly to OH and Adds Effective V-sec - Robust transfer of I_p to subsequent OH drive - LHI current and poloidal flux add to equivalent OH-phase V-s – LHI: \approx 29 mV-s - OH-only: \approx 41 mV-s – Equivalent OH Flux savings: \approx 12 mV-s # LHI-Produced Handoff Targets Have Favorable MHD Properties - OH usually limited by strong low m/n tearing modes - Due to flat q profile with low magnetic shear - Pure OH: Saturated low-order activity - Internal modes suppressed via LHI startup - Hollow I(R) improves stability - LHI-OH: Decaying n = 1 followed by quiescent period - In principle, LHI-produced J(R) could be frozen via subsequent P_{aux} # At B_t ~ 0.15 T, LHI T_e Profiles Comparable to L-Mode Profiles - First Thomson measurements made in ohmic discharges on Pegasus - Similarity of T_e (R) suggests high B_t LHI may resemble L-mode like confinement - Ability to test V_{LHI} scaling at B_t ~ 0.15 T limited - Geometric constraints of LHI system - Operation limits of V_{LHI} # Low Central Heating Power Density in LHI Discharges May Explain Sustained Hollow T_e Profiles - Very low ℓ_i of LHI \rightarrow low η^*j^2 in core - Minimum P_{rad} estimated from AXUV bolometers (P_{AXUV} ≤ P_{RAD}) - Ohmic, LHI ($B_t \sim 0.15 \text{ T}$): - core $\eta^*j^2 \ge P_{AXUV}$ - LHI ($B_t \sim 0.045 \text{ T}$): - core $\eta^*j^2 \le P_{AXUV}$ - Higher I_p and/or adding P_{aux} should yield peaked T_e profile - A heating power problem, not impurity problem | ℓ _i [H] | η*j ² ₍₀₎
[kW/m ³] | P _{AXUV}
[kW/m³] | |--------------------|---|------------------------------| | 0.44 | 45 | 1 | | 0.28 | 7.4 | 25 | | 0.22 | 2 | 2 | $$N_e(0) \sim 1-2 \times 10^{19} \text{ m}^{-3}$$ # Need Physics Understanding of LHI Current Drive • LHI V_{eff} from helicity balance: $$V_{LHI} \lesssim \frac{A_{inj}B_{\phi,inj}}{\Psi_{tor}}V_{inj}$$ - Reconnection of I_{inj} = potential CD (NIMROD*) - Associated with bursts of low-f n = 1 activity - Additional physics/CD mechanism(s) active - Sustained I_p and suppressed n = 1 - Anomalous T_i correlated with high freq. activity** - → Insertable probes used to investigate Sustained I_n with n = 1 activity suppressed # Current Drive Scaling Shows Linear Dependence on V_{LHI} - T_e profile structure fills in at B_t ~ 0.15 T - Operating space narrows as B_t is increased - MHD transition not observed at 0.15 T - Relaxation issues with low V_{inj} # LHI I_p Depends Upon Helicity Input Rate, Not V_{inj} Same total input helicity rate, V_{LHI}, but different levels of V_{inj} Same V_{LHI} results in similar levels of I_p and T_e - Open field line theory* suggests $T_{e,max} \sim \frac{V_{inj}}{4}$ - Data doesn't challenge T_e limit - Observed T_e not proportional to V_{inj} ### Magnetic Activity During LHI Resembles Alfvénic Turbulence - Edge-localized high-f $\tilde{B}_{LHI} \gg \tilde{B}_{OH}$ - LHI spectral decay similar to Alfvénic turbulence:* - ~5/3 for $f < f_{ci}$ → MHD turbulence - ~2.7 for $f > f_{ci}$ → KAW and/or whistler turb. - Such turbulence often associated w/ reconnection: - Localized turbulence → localized reconnection ? #### Edge-localized B Autopower Spectra ### High $f \gg f_{ci}$ Activity Correlated with LHI Drive - Study helicity-sustained discharges w/ varying $V_{LHI} \rightarrow$ focus on LHI current drive - Activity above ~ 1 MHz ($\gg f_{ci}$) increases linearly with I_p , V_{LHI} ### Other Observed High-f Characteristics Suggest Kinetic Nature - KAWs have $k_{\perp}\rho_s \sim 1$ - Meas. $L_{corr,R}$ ~ 2−10 cm → $k_{\perp}\rho_{s}$ ~ 0.1−0.7 - $-k_R^{-1}$ comparable to inj. diameter - \tilde{B} strong function of V_{inj} - LHI e⁻ beam: $v_{beam} \propto V_{inj}^{1/2}$ - e beam-driven KAWs: $\gamma = \gamma(v_{beam})$ # Average B Structure Consistent with Outer Localized I_{inj} Streams - Edge I_{ini} streams & high-freq MHD persist during LHI in outer $P_e \sim 0$ region - Low-MHD, reduced n = 1 phase shows stationary I_{inj} structures ## Edge Field Structure and Fluctuations Suggest Two-Zone Hypothesis - Implies (simplistic) two-zone structure during LHI: - 1) Inner tokamak-like plasma - 2) Outer region with turbulent injected current streams - High-f (≥ 900 kHz) magnetic turbulence localized in region between boundaries - Reconnection and/or turbulence give rise to edge current source? ### Developing Non-Circular Injector for Future LHI Applications #### Non-circular Kama injector - Increased I_{inj} with low $w_{inj} =>$ increase Taylor limit - Conform to flux surfaces => optimize coupling - Re-entrant port-mount => larger facilities, such as NSTX-U Taylor limit $$I_p \le I_{TL} \sim \sqrt{I_{TF} I_{inj} / w}$$ Helicity limit $$I_p \leq V_{LHI}/R_p {\sim} A_{inj} V_{inj}$$ - Large $A_{inj} \Rightarrow \text{high } V_{LHI} \text{ at low } V_{inj}$ #### Prototype Kama fabricated for Pegasus - Arc channel: 1 cm x 16.2 cm - $A_{inj} = 16 cm^2$ - Arc channel to LCFS: 1.8 cm - Non-refractory to simplify fabrication - Tests this Fall #### Advanced "Kama" Injector in PEGASUS-III Integrated Kama Assembly # PEGASUS-III is a Modification of the PEGASUS Experiment - Solenoid-free central column - Stronger, high- B_T assembly - Active divertor coils - CHI, RF, and next-gen LHI - Expanded diagnostics | Parameter | PEGASUS | PEGASUS-III | |---|----------|-------------| | I_{TF} | 0.288 MA | 1.15 MA | | N_{TF} | 12 | 24 | | ψ_{sol} (mWb) | 40 | 0 | | R_{inner} [cm] | 5.5 | 7.0 | | TF Conductor
Area [cm ²] | 13.2 | 72 | | $B_{T,max}$ [T] at $R_0{\sim}0.4$ m | 0.15 | 0.58 | | B_T Flattop [ms] | 25 | 50-100 | | Α | 1.15 | 1.18 | #### PEGASUS-III # Projecting LHI to Larger Facilities Requires Tests at Increasing B_T #### • Physics issues with B_T - Core confinement - $-I_p$ gains via increased Taylor limit $\sim \sqrt{I_{TF}}$ - Reconnection and current drive - Stochastic edge transport - Current stream stability and CD - $-B_p$ null formation, tokamak relaxation - Demonstration of increased I_p #### Technology - Optimized geometry for reduced V_{inj} - Current channel uniformity - PMI mitigation - Long-pulse capabilities 0-D Power-Balance Projections for LHI on PEGASUS-III ## Two-Electrode CHI System to be Implemented on PEGASUS-III - CHI system targets $I_p = 0.3 \text{ MA}$ - Segmented floating electrodes - $B_T \sim 0.6$ T for increased Taylor limit and decrease I_{inj} - $\Psi_{inj} \sim 35$ mWb to reach 0.3 MA Taylor limit - Explore CHI physics at $B_T = 0.6$ T - Optimization of T-CHI and/or S-CHI scenarios - 2D axisymmetry vs 3D effects - Flux conversion efficiency - Validation of MHD simulations - Comparison and synergies w/other methods (LHI, RF, etc.) - UW collaboration team (Raman, Nelson, Rogers) ### 65 mWb Connecting Simple CHI Electrodes # RF Heating and Current Drive: Synergies with LHI; Handoff/Startup - Initial focus on EBW heating and current drive: - Heating for increased LHI/CHI efficiency - Classical helicity dissipation scaling: $\dot{K} \sim I_p R_p \sim T_e^{-3/2}$ - Efficiency and localization - EBW CD as potential current sustainment - ORNL collaboration team (Diem, Bigelow, Lau) - Loan agreement for the 8 GHz, 500 kW FTU system from Frascati in progress - Modeling of scenarios (GENRAY, CQL3D) ongoing - Implementation: Steerable O-mode mirror on LFS - Planned expansion: add ECH and ECCD - Direct RF startup: Trapped electron precession → ECCD (see M. Ono (2019)) - Explore proposed NSTX-U startup scenario (Poli et al.): HI + electron heating 40 60 # PEGASUS-III TF Magnets Consist of 3 Major Subassemblies # PEGASUS-III Features New 24-Turn TF Bundle Capable of Creating 4x B_T of PEGASUS #### TF Bundle - Maintains access to low-A physics - $12 \rightarrow 24 \text{ turns}$ - Expands capability to $B_T = 0.6T$ Wedge conductor sample draw for integrity checks # Finger Assembly Satisfies Electro-Mechanical Constraints with Compact Design - 30N/mm² compression provided by Finger Assembly - Minimizes electrical resistance and prevents slippage Tightening of wedges stretches filament belt and produces radial compression # FEM Simulation Captures Range of Structural Behavior #### Displacement of Overall Structure: ### Movement to PEGASUS-III is Underway - Compare/contrast/combine multiple non-inductive startup techniques in a single facility - Local Helicity Injection (LHI) - Transient and Sustained Coaxial Helicity Injection (CHI) - EBW/EC radiofrequency heating and current drive - Understanding of LHI processes increasing - Handoff to OH with MHD mitigation - $T_e(R,t)$ profiles indicate increase with B_T - Alfvenic-like fluctuations correlate with I_p - Two-zone magnetic geometry suggested - Operational in 2020 - New centerstack and TF assembly - Expanded power supplies - Next-generation LHI current injectors - Expanded diagnostics