# Integrated Studies of Solenoid-Free Tokamak Startup (on the PEGASUS-III Experiment)

R.J. Fonck, M.W. Bongard, J.A. Goetz, B.A. Kujak-Ford, B.T. Lewicki, M.D. Nornberg, J.A. Reusch, G.R. Winz and PEGASUS Group



20<sup>th</sup> International Spherical Torus Workshop

ENEA – Via Enrico Fermi 45, Frascati

October 28-31, 2019





## Non-Solenoidal Startup is Critical for the Spherical Tokamak

- Future ST designs call for solenoid-free operation
  - Nuclear ST designs generally minimize OH due to shielding/cost
- OH solenoid removal simplifies tokamak design
  - Potential cost reduction
  - More space for inboard shielding/blanket → Critical for ST
  - Reduce PF system requirements
  - Lower electromechanical stresses
- Solenoid-free startup techniques may offer tools for modifying J(R)



No / small OH HTS ST-FNSF / Pilot Plant

J.E. Menard, Phil. Trans. R. Soc. A 377, 20170440 (2019)





# Several Solenoid-Free Startup Techniques Pursued Globally

- Multiple methods have shown promise
  - Local helicity injection (LHI)
  - Coaxial helicity injection (CHI)
  - Radiofrequency plasma initiation, heating, and current drive
  - Poloidal field induction
  - Neutral beam current drive
- Need a dedicated facility to develop understanding and scalability
  - Develop, validate predictive understanding
  - Provide sufficient runtime, experience
  - Comparative studies and exploit synergies
  - Establish routine startup tools

PEGASUS HFS LHI







 $I_p \sim N_{turns} I_{inj}$ 

 $I_p \gtrsim N_{turns} I_{inj}$ 

 $I_p \gg N_{turns} I_{inj}$ 



#### RF Startup Experiments

| RF<br>Method  | Device   | $I_p$ [kA] |
|---------------|----------|------------|
| ECH + PF      | DIII-D   | 166        |
| induction     | JT60-U   | 100        |
| ЕСН           | QUEST    | 70         |
|               | DIII-D   | 33         |
|               | KSTAR    | 15         |
| ECH +<br>LHCD | T-7      | 20         |
| EBW           | MAST     | 73         |
|               | LATE     | 15         |
| LH            | PLT      | 100        |
|               | TST-2    | 25         |
|               | GLOBUS-M | 21         |

NSTX Transient CHI





# PEGASUS-III Will Provide a Dedicated US Platform for Solenoid-Free Startup Development

- Compare/contrast/combine concepts for solenoidfree startup in a dedicated facility
  - Local Helicity Injection
    - · Discussed herein
  - Coaxial Helicity Injection (Transient, Sustained)
    - · See R. Raman, this meeting
  - EBW assist and sustainment (ECH, ECCD in future)
    - See S. Diem, this meeting
  - Future: NBI heating and current drive?
- Goal: develop validated concept, equipment for 1 MA startup on NSTX-U and beyond
- Construction underway, operational in 2020



**PEGASUS-III** 













# Local Helicity Injection (LHI) Routinely Used for Non-Solenoidal Startup on PEGASUS ST



Non-Solenoidal,  $I_p \le 0.2 \text{ MA} (I_{inj} \le 8 \text{ kA})$ 



- Edge current extracted from injectors
- Relaxation to tokamak-like state via helicity-conserving instabilities





### Flexibility in LHI Current Injectors Location Validated

• Comparable  $I_p$  via two methods

LFS: Dominant Non-solenoidal Induction



HFS: Dominant Helicity Injection



Helicity input adds from all sources



- LFS: Outer midplane injection
  - High  $R_{inj}$  → weak  $V_{LHI}$
  - Dynamic shape → strong  $V_{IND}$

- HFS: Lower divertor injection
  - Low  $R_{inj}$  → strong  $V_{LHI}$
  - Static shape → weak  $V_{IND}$

- Efficient LFS → HFS transfer
  - Aid high B<sub>T</sub> relaxation
- LFS geometry preferred for Pegasus-III and NSTX-U
  - Port mounted injector; avoid crowded divertor region
  - SC coils in future may influence this





## LHI Startup Transitions Smoothly to OH and Adds Effective V-sec

- Robust transfer of  $I_p$  to subsequent OH drive
- LHI current and poloidal flux add to equivalent OH-phase V-s

– LHI:  $\approx$  29 mV-s

- OH-only:  $\approx$  41 mV-s

– Equivalent OH Flux savings:  $\approx$  12 mV-s









# LHI-Produced Handoff Targets Have Favorable MHD Properties

- OH usually limited by strong low m/n tearing modes
  - Due to flat q profile with low magnetic shear
  - Pure OH: Saturated low-order activity
- Internal modes suppressed via LHI startup
  - Hollow I(R) improves stability
  - LHI-OH: Decaying n = 1 followed by quiescent period
  - In principle, LHI-produced J(R) could be frozen via subsequent  $P_{aux}$







# At B<sub>t</sub> ~ 0.15 T, LHI T<sub>e</sub> Profiles Comparable to L-Mode Profiles

- First Thomson measurements made in ohmic discharges on Pegasus
- Similarity of T<sub>e</sub> (R) suggests high B<sub>t</sub> LHI may resemble L-mode like confinement
- Ability to test V<sub>LHI</sub> scaling at B<sub>t</sub> ~ 0.15 T limited
  - Geometric constraints of LHI system
  - Operation limits of V<sub>LHI</sub>







# Low Central Heating Power Density in LHI Discharges May Explain Sustained Hollow T<sub>e</sub> Profiles

- Very low  $\ell_i$  of LHI  $\rightarrow$  low  $\eta^*j^2$  in core
- Minimum P<sub>rad</sub> estimated from AXUV bolometers (P<sub>AXUV</sub> ≤ P<sub>RAD</sub>)
  - Ohmic, LHI ( $B_t \sim 0.15 \text{ T}$ ):
    - core  $\eta^*j^2 \ge P_{AXUV}$
  - LHI ( $B_t \sim 0.045 \text{ T}$ ):
    - core  $\eta^*j^2 \le P_{AXUV}$
- Higher I<sub>p</sub> and/or adding P<sub>aux</sub> should yield peaked T<sub>e</sub> profile
  - A heating power problem, not impurity problem



| ℓ <sub>i</sub> [H] | η*j <sup>2</sup> <sub>(0)</sub><br>[kW/m <sup>3</sup> ] | P <sub>AXUV</sub><br>[kW/m³] |
|--------------------|---------------------------------------------------------|------------------------------|
| 0.44               | 45                                                      | 1                            |
| 0.28               | 7.4                                                     | 25                           |
| 0.22               | 2                                                       | 2                            |

$$N_e(0) \sim 1-2 \times 10^{19} \text{ m}^{-3}$$





# Need Physics Understanding of LHI Current Drive

• LHI  $V_{eff}$  from helicity balance:

$$V_{LHI} \lesssim \frac{A_{inj}B_{\phi,inj}}{\Psi_{tor}}V_{inj}$$

- Reconnection of  $I_{inj}$  = potential CD (NIMROD\*)
  - Associated with bursts of low-f n = 1 activity

- Additional physics/CD mechanism(s) active
  - Sustained  $I_p$  and suppressed n = 1
  - Anomalous  $T_i$  correlated with high freq. activity\*\*
  - → Insertable probes used to investigate



Sustained  $I_n$  with n = 1 activity suppressed







# Current Drive Scaling Shows Linear Dependence on V<sub>LHI</sub>



- T<sub>e</sub> profile structure fills in at B<sub>t</sub> ~ 0.15 T
- Operating space narrows as B<sub>t</sub> is increased
  - MHD transition not observed at 0.15 T
  - Relaxation issues with low V<sub>inj</sub>







# LHI $I_p$ Depends Upon Helicity Input Rate, Not $V_{inj}$

 Same total input helicity rate, V<sub>LHI</sub>, but different levels of V<sub>inj</sub>

Same V<sub>LHI</sub> results in similar levels of I<sub>p</sub> and T<sub>e</sub>

- Open field line theory\* suggests  $T_{e,max} \sim \frac{V_{inj}}{4}$ 
  - Data doesn't challenge T<sub>e</sub> limit
  - Observed T<sub>e</sub> not proportional to V<sub>inj</sub>







### Magnetic Activity During LHI Resembles Alfvénic Turbulence

- Edge-localized high-f  $\tilde{B}_{LHI} \gg \tilde{B}_{OH}$
- LHI spectral decay similar to Alfvénic turbulence:\*
  - ~5/3 for  $f < f_{ci}$  → MHD turbulence
  - ~2.7 for  $f > f_{ci}$  → KAW and/or whistler turb.
- Such turbulence often associated w/ reconnection:
  - Localized turbulence → localized reconnection ?

#### Edge-localized B Autopower Spectra







### High $f \gg f_{ci}$ Activity Correlated with LHI Drive



- Study helicity-sustained discharges w/ varying  $V_{LHI} \rightarrow$  focus on LHI current drive
- Activity above  $\sim 1$  MHz ( $\gg f_{ci}$ ) increases linearly with  $I_p$ ,  $V_{LHI}$





### Other Observed High-f Characteristics Suggest Kinetic Nature

- KAWs have  $k_{\perp}\rho_s \sim 1$ 
  - Meas.  $L_{corr,R}$  ~ 2−10 cm →  $k_{\perp}\rho_{s}$  ~ 0.1−0.7
  - $-k_R^{-1}$  comparable to inj. diameter



- $\tilde{B}$  strong function of  $V_{inj}$ 
  - LHI e<sup>-</sup> beam:  $v_{beam} \propto V_{inj}^{1/2}$
- e beam-driven KAWs:  $\gamma = \gamma(v_{beam})$







# Average B Structure Consistent with Outer Localized I<sub>inj</sub> Streams



- Edge  $I_{ini}$  streams & high-freq MHD persist during LHI in outer  $P_e \sim 0$  region
- Low-MHD, reduced n = 1 phase shows stationary  $I_{inj}$  structures





## Edge Field Structure and Fluctuations Suggest Two-Zone Hypothesis





- Implies (simplistic) two-zone structure during LHI:
  - 1) Inner tokamak-like plasma
- 2) Outer region with turbulent injected current streams
- High-f (≥ 900 kHz) magnetic turbulence localized in region between boundaries
  - Reconnection and/or turbulence give rise to edge current source?





### Developing Non-Circular Injector for Future LHI Applications

#### Non-circular Kama injector

- Increased  $I_{inj}$  with low  $w_{inj} =>$  increase Taylor limit
- Conform to flux surfaces => optimize coupling
- Re-entrant port-mount => larger facilities, such as NSTX-U

Taylor limit 
$$I_p \le I_{TL} \sim \sqrt{I_{TF} I_{inj} / w}$$

Helicity limit

$$I_p \leq V_{LHI}/R_p {\sim} A_{inj} V_{inj}$$

- Large  $A_{inj} \Rightarrow \text{high } V_{LHI} \text{ at low } V_{inj}$ 

#### Prototype Kama fabricated for Pegasus

- Arc channel: 1 cm x 16.2 cm
- $A_{inj} = 16 cm^2$
- Arc channel to LCFS: 1.8 cm
- Non-refractory to simplify fabrication
- Tests this Fall

#### Advanced "Kama" Injector in PEGASUS-III



Integrated Kama Assembly











# PEGASUS-III is a Modification of the PEGASUS Experiment



- Solenoid-free central column
- Stronger, high- $B_T$  assembly
- Active divertor coils
- CHI, RF, and next-gen LHI
- Expanded diagnostics

| Parameter                               | PEGASUS  | PEGASUS-III |
|-----------------------------------------|----------|-------------|
| $I_{TF}$                                | 0.288 MA | 1.15 MA     |
| $N_{TF}$                                | 12       | 24          |
| $\psi_{sol}$ (mWb)                      | 40       | 0           |
| $R_{inner}$ [cm]                        | 5.5      | 7.0         |
| TF Conductor<br>Area [cm <sup>2</sup> ] | 13.2     | 72          |
| $B_{T,max}$ [T] at $R_0{\sim}0.4$ m     | 0.15     | 0.58        |
| $B_T$ Flattop [ms]                      | 25       | 50-100      |
| Α                                       | 1.15     | 1.18        |

#### PEGASUS-III







# Projecting LHI to Larger Facilities Requires Tests at Increasing $B_T$

#### • Physics issues with $B_T$

- Core confinement
- $-I_p$  gains via increased Taylor limit  $\sim \sqrt{I_{TF}}$
- Reconnection and current drive
- Stochastic edge transport
- Current stream stability and CD
- $-B_p$  null formation, tokamak relaxation
- Demonstration of increased  $I_p$

#### Technology

- Optimized geometry for reduced  $V_{inj}$
- Current channel uniformity
- PMI mitigation
- Long-pulse capabilities





0-D Power-Balance Projections for LHI on PEGASUS-III







## Two-Electrode CHI System to be Implemented on PEGASUS-III

- CHI system targets  $I_p = 0.3 \text{ MA}$ 
  - Segmented floating electrodes
  - $B_T \sim 0.6$  T for increased Taylor limit and decrease  $I_{inj}$
  - $\Psi_{inj} \sim 35$  mWb to reach 0.3 MA Taylor limit
- Explore CHI physics at  $B_T = 0.6$  T
  - Optimization of T-CHI and/or S-CHI scenarios
  - 2D axisymmetry vs 3D effects
  - Flux conversion efficiency
  - Validation of MHD simulations
  - Comparison and synergies w/other methods (LHI, RF, etc.)
- UW collaboration team (Raman, Nelson, Rogers)

### 65 mWb Connecting Simple CHI Electrodes









# RF Heating and Current Drive: Synergies with LHI; Handoff/Startup

- Initial focus on EBW heating and current drive:
  - Heating for increased LHI/CHI efficiency
    - Classical helicity dissipation scaling:  $\dot{K} \sim I_p R_p \sim T_e^{-3/2}$
  - Efficiency and localization
  - EBW CD as potential current sustainment
- ORNL collaboration team (Diem, Bigelow, Lau)
  - Loan agreement for the 8 GHz, 500 kW FTU system from Frascati in progress
  - Modeling of scenarios (GENRAY, CQL3D) ongoing
  - Implementation: Steerable O-mode mirror on LFS

- Planned expansion: add ECH and ECCD
  - Direct RF startup: Trapped electron precession → ECCD (see M. Ono (2019))
  - Explore proposed NSTX-U startup scenario (Poli et al.): HI + electron heating



40 60









# PEGASUS-III TF Magnets Consist of 3 Major Subassemblies





# PEGASUS-III Features New 24-Turn TF Bundle Capable of Creating 4x B<sub>T</sub> of PEGASUS

#### TF Bundle



- Maintains access to low-A physics
- $12 \rightarrow 24 \text{ turns}$
- Expands capability to  $B_T = 0.6T$





Wedge conductor sample draw for integrity checks





# Finger Assembly Satisfies Electro-Mechanical Constraints with Compact Design



- 30N/mm<sup>2</sup> compression provided by Finger Assembly
- Minimizes electrical resistance and prevents slippage



Tightening of wedges stretches filament belt and produces radial compression





# FEM Simulation Captures Range of Structural Behavior

#### Displacement of Overall Structure:







### Movement to PEGASUS-III is Underway

- Compare/contrast/combine multiple non-inductive startup techniques in a single facility
  - Local Helicity Injection (LHI)
  - Transient and Sustained Coaxial Helicity Injection (CHI)
  - EBW/EC radiofrequency heating and current drive
- Understanding of LHI processes increasing
  - Handoff to OH with MHD mitigation
  - $T_e(R,t)$  profiles indicate increase with  $B_T$
  - Alfvenic-like fluctuations correlate with  $I_p$
  - Two-zone magnetic geometry suggested
- Operational in 2020
  - New centerstack and TF assembly
  - Expanded power supplies
  - Next-generation LHI current injectors
  - Expanded diagnostics



