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6} Local Helicity Injection is a Promising Non-Solenoidal Startup Technique

Non-Solenoidal, High I,, < 0.2 MA (I,,; < 8 kA)
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« Edge current extracted from injectors «  Current drive quantified by
« Relaxation to tokamak-like state via A B
helicity-conserving instabilities % _ injPT,inj %
. Used routinely for startup on PEGASUS LHI p inj
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6) Injector Geometries Emphasize Different Current Drives

Low-Field-Side Injection:

« Dynamic shape - strong V \p

R.J. Fonck, APS-DPP 2017

1, [MA]

Voltages [V]

0.2 : : : :
0.1 )/\
0.0 s s s s

2F I I I VINDI

T e
-2F ——— Vb

20 25 30 35
Time [ms]

High-Field-Side Injection:

« Static shape = minimal V,\p

|, [MA]

Voltages [V]

Geometry choice impacts potential for scaling to fusion scale

“Taylor Limit” for ultimate |, applicable to both I, ~

Type and localization of heating; transport differences

Different facility and technical requirements
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E;;) Path to High I, Depends on Choice of LHI Injector Geometry

LFS (~ midplane) HFS (divertor)
« Increase Taylor limit in first half of discharge « Decrease Ry,
IINg ~ L
— Increase ITF, W]N] VLHI Ring
« Increase A, lower V), * Increase Ay, Ving
—  Location allows for larger Injector Area —  More engineering challenges
—  Mitigate PMI —  Increased Vyy; increases PMI
« Plasma position and shape control challenges « Improved performance at increased TF?
—  Maintain coupling to guns
—  Geometry evolution sets inductive drive *  Viu(t) control for | (t) path optimization

APPROACH: Demonstrate scaling to higher |, through injector and facility enhancements
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6} Access to Higher Ip: Taylor Limit Increase Early in LFS Discharges

Non-Circular, High-A,,; Helicity Injector Renderings

« LFS discharges experience an extended Taylor-

limited I, phase ’ Yinode.
— Increase I,(t) through increase in TL during first half of / 1= Gas Feed
discharge

W Frustum,
Shield; Mo Rings

» Increase Taylor limit through injector design
and/or facility modifications

High A,,; = 6 cm?,
Low w;,; = 1.6 cm

ITFTing Ignition Electrode Dzstrtbuted Gas Manifold Aperture
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Several Issues Need Addressing to Scale LHI Startup to
Larger Fusion Experiments or Facilities

« Establishing LHI Physics Basis

HFS LHI at low By typically show low T, (0) and Hollow T.(R)

200

—  PMI & impurities Iz =0.096 MA s 27ms 24ms
200 I I I 3 100
—  Heating, confinement scaling ~. 150¢ * o
' £ 100} o
—  MHD & CD mechanism = 5l 20x10"
__ 15
—  Predictive I (t) model 0% 20 2¢ 28 gt
Time (ms) o 3 o
—  Discharge evolution, optimization “NelorRadua(om)  MajorFadua(em)  Major Radus ()
— By effects on PMI & MHD
o er- . . . . HFS LHI at max By indicates increasing T, (0) and Peaked T (R
—  Compatibility with heating and sustainment techniques 200 TS r s 235 m:( ) T Ll
154 1 i I t

« Technology Issues also arise

Compatibility with PF, divertor systems

Large-area, conformable injector systems

Major Ra
-

dius (cm)
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—  Injector development for low V, high B operation

—  Power system requirements =

I {
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Time (ms)
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Physics Issues

Increased I, access demo
Efficiency / confinement scaling
Relaxation accessibility

MHD behavior & CD mechanisms
PMI and impurities

Advanced injector technology
* Increased drive & Taylor limit

Facility Enhancements

24-turn TF rod; power system
Programmable V; y;(t) control

PF coils and power systems
+ X-point, shape control
DNB spectroscopy
« BR,©),J(R 1), T;(R,t), ne(R,t), nz(R, 1)
Impurity diagnostics
+ SPRED, VB, bolometry
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Non-Solenoidal Startup Remains a Critical Need for

Spherical Tokamak, and May Benefit AT

Pegasus HFS LHI

 PEGASUS research program has focused on LHI
— Local DC helicity injection + poloidal field induction
—  Questions remain for projection to larger fusion scale

— Ne?d enhancements to test scalability of LHI to larger
scale

Ip ~ Nturns Iinj Ip z Nturns Iinj Ip > Nturns Iinj

* Need for dedicated NS startup studies

—  Technique, technology development requires extended

operational time RF Startup Experiments
. RF Device I, [kA] Alpuise | Reference
— Hardware and physics development Method [ms]
ECH + PF DIII-D 166 50 [15]
_ 13 inducti JT60-U 100 500 [22]
Impact on other research programs at facility fnduction T 0
* Run time, interfering hardware during development ECH DIII-D 33 50 23]
. o ] . KSTAR 15 1,800 [24]
» Machine conditioning, impurity status, etc. Eﬁ?g T 2 175 [25]
MAST 73 450 [16]
. EBW LATE 15 80 [17,26]
PLT 100 2,500 [27]
. Enh.ancements to Pegasus can provide a _ N PLT % 250 | _B1
dedicated development station for non solenoidal GLOBUS-M | 21 | 140 | [29]
startup
NSTX Transient CHI e g ERSITY
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E;} PEGASUS-E Proposed as US Non-Solenoidal Development Station

« Evaluate leading concepts for non-solenoidal Br=0.8T; Multi-coll Dlvertor
startup in single dedicated facility
—  Local Helicity Injection
—  Coaxial Helicity Injection (Transient, Sustained)
— RF (ECH, EBW, ECCD) startup and assist
—  Poloidal Feld Induction
—  Neutral Beam CD (future)

 Develop common understanding & validation
of all approaches
—  Compare T, n,, Z,5 J(r), usable I,, impurities

—  CD mechanisms and scalability

— Power & engineering requirements . .
Collaborative Enterprise:

UNIVERSITY of

 Goal: develop validated concept, equipment W WISCONSIN WASE TNETON

for ~ 1 MA startup on NSTX-U and beyond
— Integrate features of all concepts, as appropriate OAK

“RIDGE ~ 9)) PPPL

—  “Plug and Play” installation for minimal impact and costs National Laboratory &

THE UNIVERSITY
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&) High-B; of PEGASUS-E Facilitates RF/EBW

Favorable wide range of injection angles for O-X-B

oupling

« EBW heating and CD; synergy with Hl

— Heating for increased LHI efficiency

perpendicular to B

— T, increase for compatibility with non-inductive sustainment
(e.g. NBCD)

— Potential for direct RF startup

Angle

Angle parallel to B

— Launcher design and access GENRAY, CQL3D Modeling Indicates
. . . Core Absorption for EBW Heating, CD
— Efficiency & Localization ) :

— EBW CD as potential handoff tool

— Initial concept: ~ 400 kW EBW RF, 9 GHz (TBD) M

— Collaboration w/ ORNL

Curr Den (A/cm?)
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. High-B, of PEGASUS-E Facilitates CHI Studies

. Transient CHI on NSTX:
« Deploy “simple” CHI systems J1

R.J. Fonck, APS-DPP 2017 WASHINGTON %,j PPPL

Transient CHI scaling (large seed flux)
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Sustained CHI scaling

Demonstrate access to predictable high I,

Impurity mitigation
Add RF/EBW heating to raise T (R,t)
Consider active (LHI-like) electrodes

Collaboration w/U. Washington, PPPL Suppof Ring Vacm;m/Vessel Tab

. v
Divertor Plate

UNIVERSITY of




Broadening Studies of Non-Solenoidal Startup

on PEGASUS and PEGASUS-E

» Local Helicity Injection provides non-solenoidal startup and sustainment
— Injection geometry balances V', and V,y drive, engineering constraints

— Appears scalable to large scale; questions on confinement, reconnection dynamics and By scaling

* Present understanding suggests advantages to LFS, near-midplane injection
— Added PF induction and Lower relaxation constraints
— Nonlinear advantage from increased Taylor limit at early time
— Path to decreased V,;, increased A,,; in injector design

— Continue HFS examination

 PEeGAsus-E: Proposed US integrated non-solenoidal R&D facility
— LHI, RF, CHI, Induction startup at B > 0.5T
— Projection to NSTX-U and beyond

TTTTT el/\l ERSITY
1 I
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E;;) Details on Local Helicity Injection Studies in Poster Session

Poster session: UP, Thursday PM.
+  M.W.Bongard UP11.00085 Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

«  C.M.B. Pierren UP11.00086 Enhanced Control for Local Helicity Injection on the Pegasus ST

+  G.M.Bodner UP11.00087 V. Scaling of T, and n, Measurements During Local Helicity Injection on the Pegasus
Toroidal Experiment
«  NJ.Richner UP11.00088 Investigating High Frequency Magnetic Activity During Local Helicity Injection on the
Pegasus Toroidal Experiment
+  C.Rodriguez Sanchez UP11.00089 Studies of Impurities in the Pegasus Spherical Tokamak
«  DR.Smith UP11.00090 Microstability Properties of the Local Minimum IBl Regime in Pegasus
«  A.T.Rhodes UP11.00091 Initial Measurements of Electrostatic Turbulence in Local Helicity Injection Plasmas
«  J.L.Pachicano UP11.00092 High-Field-Side MHD Activity During Local Helicity Injection
+  M.G. Burke UP11.00093 Progress Towards a New Technique for Measuring Local Electric and Magnetic Field
Fluctuations in High Temperature Plasmas
+  ].D. Weberski UP11.00098 Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup
WISCONSIN
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