Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment ### R.J. Fonck G.M. Bodner, M.W. Bongard, M.G. Burke, J.L. Pachicano, J.M. Perry, C.M. Pierren, N.J. Richner, C. Rodriguez Sanchez, D.J. Schlossberg, J.A. Reusch, J.D. Weberski 59th Annual Meeting of the APS Division of Plasma Physics Milwaukee, WI 26 October 2017 ## Local Helicity Injection is a Promising Non-Solenoidal Startup Technique - Edge current extracted from injectors - Relaxation to tokamak-like state via helicity-conserving instabilities - Used routinely for startup on PEGASUS Non-Solenoidal, High $I_v \le 0.2$ MA ($I_{ini} \le 8$ kA) Current drive quantified by $$V_{LHI} \approx \frac{A_{inj}B_{T,inj}}{\Psi}V_{inj}$$ ## Injector Geometries Emphasize Different Current Drives ### Low-Field-Side Injection: Dynamic shape → strong V_{IND} ## High-Field-Side Injection: Static shape → minimal V_{IND} - Geometry choice impacts potential for scaling to fusion scale - Type and localization of heating; transport differences - Different facility and technical requirements - "Taylor Limit" for ultimate I_p applicable to both $I_{TL} \sim \sqrt{\frac{I_{TF}I_{INJ}}{W_{INJ}}}$ ## Path to High I_p Depends on Choice of LHI Injector Geometry ## LFS (~ midplane) - Increase Taylor limit in first half of discharge - Increase I_{TF} , $\frac{I_{INJ}}{W_{INI}}$ - Increase A_{IN.J}, lower V_{IN.J} - Location allows for larger Injector Area - Mitigate PMI - Plasma position and shape control challenges - Maintain coupling to guns - Geometry evolution sets inductive drive ### HFS (divertor) - Decrease R_{IN,I} - $V_{LHI} \sim \frac{1}{R_{INI}}$ - Increase A_{INJ}, V_{INJ} - More engineering challenges - Increased V_{INI} increases PMI - Improved performance at increased TF? - $V_{LHI}(t)$ control for $I_p(t)$ path optimization APPROACH: Demonstrate scaling to higher I_D through injector and facility enhancements ## Access to Higher I_p : Taylor Limit Increase Early in LFS Discharges #### LFS discharges experience an extended Taylorlimited I_n phase - Increase $I_p(t)$ through increase in TL during first half of discharge - Increase Taylor limit through injector design and/or facility modifications $$- I_{TL} \sim \sqrt{\frac{I_{TF}I_{INJ}}{W_{INJ}}}$$ - Access to high I_p with reduced V_{ini} - Mitigates PMI - Increase A_{inj} , I_{TF} ; decrease w_{inj} , V_{inj} #### Non-Circular, High-A_{inj} Helicity Injector Renderings $High A_{inj} = 6 cm^2,$ $Low w_{inj} = 1.6 cm$ Aperture #### 0-D Power-Balance Projections of $I_p(t)$: ## Several Issues Need Addressing to Scale LHI Startup to Larger Fusion Experiments or Facilities #### Establishing LHI Physics Basis - PMI & impurities - Heating, confinement scaling - MHD & CD mechanism - Predictive I_p(t) model - Discharge evolution, optimization - B_T effects on PMI & MHD - Compatibility with heating and sustainment techniques #### Technology Issues also arise - Compatibility with PF, divertor systems - Large-area, conformable injector systems - Injector development for low V, high B_T operation - Power system requirements #### HFS LHI at low B_{TF} typically show low $T_{e}(0)$ and Hollow $T_{e}(R)$ ## LHI Research on PEGASUS-E CanTest Critical Scalings #### Physics Issues - Increased I_p access demo - Efficiency / confinement scaling - Relaxation accessibility - MHD behavior & CD mechanisms - PMI and impurities - Advanced injector technology - Increased drive & Taylor limit #### Facility Enhancements - 24-turn TF rod; power system - Programmable $V_{LHI}(t)$ control - PF coils and power systems - X-point, shape control - DNB spectroscopy - $\tilde{B}(R,t), J(R,t), T_i(R,t), n_e(R,t), n_Z(R,t)$ - Impurity diagnostics - · SPRED, VB, bolometry | Parameter | Pegasus | PEGASUS-E | |-------------------------------------|----------|-----------| | R_{sol} [cm] | 4.9 | N/A | | I _{sol} [kA] | ± 24 | 0 | | ψ_{sol} (mWb) | 40 | 0 | | N_{TF} | 12 | 24 | | $N_{TF} \times I_{TF}$ | 0.288 MA | 1.15 MA | | $B_{T,max}$ [T] at $R_0 \sim 0.4$ m | 0.15 | 0.60 | | Α | 1.15 | 1.22 | | B_T Flattop [ms] | 50 | 100 | | TF Conductor
Area [cm²] | 13.2 | 151 | | I _p Target [MA] | 0.2 | 0.3 | **PEGASUS** High-Stress OH Solenoid 12-turn TF Bundle PEGASUS-E ## Non-Solenoidal Startup Remains a Critical Need for Spherical Tokamak, and May Benefit AT - PEGASUS research program has focused on LHI - Local DC helicity injection + poloidal field induction - Questions remain for projection to larger fusion scale - Need enhancements to test scalability of LHI to larger scale - Need for dedicated NS startup studies - Technique, technology development requires extended operational time - Hardware and physics development - Impact on other research programs at facility - Run time, interfering hardware during development - Machine conditioning, impurity status, etc. - Enhancements to Pegasus can provide a dedicated development station for non solenoidal startup #### Pegasus HFS LHI $I_p \sim N_{turns} I_{inj}$ $I_p \gtrsim N_{turns} I_{inj}$ $I_p \gg N_{turns} I_{inj}$ RF Startup Experiments | KF Startup Experiments | | | | | | | | | |------------------------|----------|------------|-------------------------|-----------|--|--|--|--| | RF
Method | Device | I_p [kA] | Δt_{pulse} [ms] | Reference | | | | | | ECH + PF | DIII-D | 166 | 50 | [15] | | | | | | induction | JT60-U | 100 | 500 | [22] | | | | | | ЕСН | QUEST | 70 | 1,500 | [17] | | | | | | | DIII-D | 33 | 50 | [23] | | | | | | | KSTAR | 15 | 1,800 | [24] | | | | | | ECH +
LHCD | T-7 | 20 | 175 | [25] | | | | | | EBW | MAST | 73 | 450 | [16] | | | | | | | LATE | 15 | 80 | [17,26] | | | | | | LH | PLT | 100 | 2,500 | [27] | | | | | | | TST-2 | 25 | 70 | [17,28] | | | | | | | GLOBUS-M | 21 | 140 | [29] | | | | | NSTX Transient CHI ## PEGASUS-E Proposed as US Non-Solenoidal Development Station #### Evaluate leading concepts for non-solenoidal startup in single dedicated facility - Local Helicity Injection - Coaxial Helicity Injection (Transient, Sustained) - RF (ECH, EBW, ECCD) startup and assist - Poloidal Feld Induction - Neutral Beam CD (future) #### Develop common understanding & validation of all approaches - Compare T_e , n_e , Z_{eff} , J(r), usable I_p , impurities - CD mechanisms and scalability - Power & engineering requirements #### Goal: develop validated concept, equipment for ~ 1 MA startup on NSTX-U and beyond - Integrate features of all concepts, as appropriate - "Plug and Play" installation for minimal impact and costs $B_T \le 0.9T$; Multi-coil Divertor #### **Collaborative Enterprise:** ## High-B_T of PEGASUS-E Facilitates RF/EBW ## • EBW heating and CD; synergy with HI - Heating for increased LHI efficiency - T_e increase for compatibility with non-inductive sustainment (e.g. NBCD) - Potential for direct RF startup - Launcher design and access - Efficiency & Localization - EBW CD as potential handoff tool - Initial concept: ~ 400 kW EBW RF, 9 GHz (TBD) - Collaboration w/ ORNL #### Favorable wide range of injection angles for O-X-B GENRAY, CQL3D Modeling Indicates Core Absorption for EBW Heating, CD ## High- B_T of PEGASUS-E Facilitates CHI Studies ## Deploy "simple" CHI systems - Flexible, segmented floating electrodes - Transient CHI scaling (large seed flux) - Sustained CHI scaling - Demonstrate access to predictable high I_p - Impurity mitigation - Add RF/EBW heating to raise $T_e(R,t)$ - Consider active (LHI-like) electrodes - Collaboration w/U. Washington, PPPL #### Transient CHI on NSTX: Pre-Conceptual Segmented CHI Electrode Concept on Pegasus-E ## Broadening Studies of Non-Solenoidal Startup on Pegasus and Pegasus-E - Local Helicity Injection provides non-solenoidal startup and sustainment - Injection geometry balances V_{LHI} and V_{IND} drive, engineering constraints - Appears scalable to large scale; questions on confinement, reconnection dynamics and B_T scaling - Present understanding suggests advantages to LFS, near-midplane injection - Added PF induction and Lower relaxation constraints - Nonlinear advantage from increased Taylor limit at early time - Path to decreased V_{inj} , increased A_{inj} in injector design - Continue HFS examination - PEGASUS-E: Proposed US integrated non-solenoidal R&D facility - LHI, RF, CHI, Induction startup at $B_T > 0.5$ T - Projection to NSTX-U and beyond ## Details on Local Helicity Injection Studies in Poster Session #### Poster session: UP, Thursday PM: | • | M.W. Bongard UP11.00085 | Non-Solenoidal Startur | via Helicity In | njection in the Pegasus ST | | |---|-------------------------|------------------------|-----------------|----------------------------|--| |---|-------------------------|------------------------|-----------------|----------------------------|--| - C.M.B. Pierren UP11.00086 Enhanced Control for Local Helicity Injection on the Pegasus ST - G.M. Bodner UP11.00087 $V_{\rm eff}$ Scaling of $T_{\rm e}$ and $n_{\rm e}$ Measurements During Local Helicity Injection on the Pegasus Toroidal Experiment - N.J. Richner UP11.00088 Investigating High Frequency Magnetic Activity During Local Helicity Injection on the Pegasus Toroidal Experiment - C. Rodriguez Sanchez UP11.00089 Studies of Impurities in the Pegasus Spherical Tokamak - D.R. Smith UP11.00090 Microstability Properties of the Local Minimum |B| Regime in Pegasus - A.T. Rhodes UP11.00091 Initial Measurements of Electrostatic Turbulence in Local Helicity Injection Plasmas - J.L. Pachicano UP11.00092 High-Field-Side MHD Activity During Local Helicity Injection - M.G. Burke UP11.00093 Progress Towards a New Technique for Measuring Local Electric and Magnetic Field Fluctuations in High Temperature Plasmas - J.D. Weberski UP11.00098 Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup