The PEGASUS-Upgrade Experiment

R.J. Fonck

M.W. Bongard, J.L. Barr, H.G. Frerichs, B.T. Lewicki, J.A. Reusch, O. Schmitz, G.R. Winz

57th Annual Meeting of the APS Division of Plasma Physics

Savannah, GA November 17, 2015

Physics Motivation

PEGASUS-U Supports Focused Physics Mission

- Nonlinear pedestal and ELM studies
 - Simultaneous measurements of p(R,t), J(R,t), $v_{\phi}(R,t)$
 - New edge diagnostics (probe arrays, DNB)
 - Tests of Sauter neoclassical bootstrap model
- ELM Modification and Mitigation
 - Novel 3D-MP coil array
 - LFS array: 12 toroidal × 7 poloidal
 - Helically-wound HFS coils
 - LHI current injectors in divertor, LFS regions
- Physics of Local Helicity Injection Startup¹
 - High I_p, long-pulse startup
 - Projections to NSTX-U

Local Helicity Injection (LHI) is a Scalable Non-solenoidal Startup Technique

- Unstable current streams form tokamak-like state via Taylor relaxation
- Compact, modular, and appears scalable to MA-class startup

A ~ 1 Operations Provide Access to AT Physics

• $A \sim 1 \rightarrow \text{high I}_p \text{ at very low B}_T$

- Excitation of peeling modes without $J_{BS}^{1,2}$
- Easy access to H-mode regime and ELMs
- Neoclassical effects (resistivity enhancement)

Modest-sized plasma and relatively low T_e

- Allows diagnostic access to pedestal
- Pedestal $J_{\phi}(R, t)$, p(R, t), and $v_{\phi}(R, t)$ via probes

¹Bongard *et al.*, Phys. Rev. Lett **107**, 035003 (2011).

² Bongard *et al.*, Nucl. Fusion **54**, 114008 (2014).

Motivates PEGASUS-Upgrade Proposal

	PEGASUS	PEGASUS-
<u>U</u>		
ψ_{SOL} (mWb)	40	138 /170
$\mathbf{B}_{\mathrm{T,max}}$ (T) at \mathbf{R}_{0}	0.14	~ 0.4
$I_{p,max}$ (MA)	0.15	0.3
Δt (ms)	15	> 50
A	1.15	1.22

- Nonlinear pedestal and ELM studies
 - Simultaneous measurements of p(R,t), J(R,t), $v_{\varphi}(R,t)$
 - New edge diagnostics (probe arrays, DNB)
 - Tests of Sauter neoclassical bootstrap model
- ELM Modification and Mitigation
 - Novel 3D-MP coil array
 - LHI current injectors in divertor, LFS regions

Upgrade Elements

Aggressive, Low-Cost Upgrade to Present Facility Proposed to Create Pegasus-U

	PEGASUS	PEGASUS-		
R _{sol} (cm)	4.9	8.4		
$I_{sol}(kA)$	± 22	$\pm 24/30$		
ψ_{SOL} (mWb)	40	138 / 170		
$B_{T,max}$ (T) at R_0	0.14	~ 0.4		
$I_{p,max}$ (MA)	0.15	0.3		
Δt (ms)	15	50 - 100		
\boldsymbol{A}	1.15	1.22		

- New Centerstack
 - Extended pulse length; Increased TF; noise-immune diagnostics
- Increased Ip
- Midplane, Divertor large-area LHI current injectors
- Upgraded OH power switches
- New TF and expanded PF power supplies

Larger Centerstack, Maintaining A ~ 1.22

New centerstack assembly

OH solenoid via PPPL collaboration

• $\Delta \Phi \downarrow OH:40 \rightarrow 170 \text{ mV-s}$

- TF bundle: $0.15 \rightarrow 0.40 \text{ T}$

- Pulse length: $15 \rightarrow 50-100 \text{ ms}$

Fig. 4-10 (right). Thermal and electromechanical stress estimates.

"Castle Nut" compression wedge in proposed, present assemblies.

OH Cascaded Multilevel Inverter for Long-Pulse OH Operation, Improved V_{loop} Control

- Optimizes use of existing switches and energy storage
 - Existing IGCT silicon at low-frequency to maximize switch-events
 - High-frequency IGBT "corrector" provides waveform refinement
 - Employs multichannel FPGA logic control
- Design matched to new central solenoid

Maintains Access to A ~1 Operating Space

 Centerstack design provides sufficient V-sec to maintain 0.3 MA for 50-100 msec

P_{OH} maintains access to H-mode

 A ~ 1.22 remains in anamolous P_{LH} regime:

R.J. Fonck, APS-DPP 2015

Core Profile and High-Resolution Edge Diagnostic Upgrades Planned

- Thomson scattering
 - 12-24 spatial points
 - Variable radial position sampling
 - ARRA-funded
- Diagnostic neutral beam
 - $T_i(R,t)$, $v_{\phi}(R,t)$, $N_Z(R,t)$
 - 80 keV, 2-3 A, H^0 , $\leq 100 \text{ ms}$
 - Part separately supported diagnostic development project
- New centerstack magnetics
- Insertable Probes across Pedestal
 - Langmuir probe array
 - B(R,t) array
 - Mach probes
- Soft X-ray imaging for LHI current streams

Thomson scattering diagnostic layout on PEGASUS facility.

DNB in refurbishment for turbulence diagnostic devleopment

H-mode, Pedestal, ELM Mission Elements

A ~ 1 Enables Nonlinear ELM Studies

- Small and Large ELMs observed in Pegasus H-mode
- ELMs evolve nonlinearly on Alfvén timescales
- Perform fast, localized measurements of all critical fields:
 - n, T, J, v, ...
 - More feasible at some scales than others
- To truly test nonlinear models, data at various A, v, S, η, etc. needed
 - Both high- and low-performance plasmas relevant to theory-experiment comparison

Quiescent Small ELM Large ELM

Edge Pedestals Measured Between ELMs in H-mode

- Short pulse, low edge T_e permit detailed edge measurements
 - $J_{\phi}(R,t)$ via multichannel Hall probe^{1,2}
 - High spatial, temporal resolution
 - p(R) via triple Langmuir probe
 - Single point, high temporal resolution
- Clear current pedestal observed
 - L → H scale lengths: $4 \rightarrow 2$ cm
- Multi-shot Langmuir probe scans indicate pressure pedestal
 - Some edge distortion present from MHD

¹ M.W. Bongard et al., Rev. Sci. Instrum. **81**, 10E105 (2010)

² M.W. Bongard *et al.*, *Phys. Rev. Lett.* **107**, 035003 (2011)

Fast-time Evolution Measurements of Pedestal Region Accessible

- Simultaneously unstable toroidal modes present during ELM
 - Detectable only within ~ cm of LCFS
 - Nonlinear energy exchange

Edge Magnetic Probes on PEGASUS:

Large ELM Magnetic Structure

ELM mode growth

- Complex, multimodal J_{edge}(R, t) collapse
 - High $\Delta t \sim 6$ μs through single large ELM
 - Current filament ejection
- Goal: studies of nonlinear ELM dynamics at Alfvénic timescale
 - Comparisons to nonlinear models

3D-Magnetic Perturbation System Planned

- Design study, fabrication as proposed work
- Comprehensive 3D-MP system
 - LFS coils, spaced with ~equal-PEST angle from model equilibria
 - 12 toroidal x 7 poloidal array
 - Initial DC power systems for n=3 control
 - HFS 4-fold helical coil set
- Uniqueness
 - Widest spectral range
 - Active and Passive control capabilities
 - Local pedestal plasma response measurements

3D Edge Current Injectors Support ELM Studies

- Local helicity injection system provides 3D SOL current injection
 - $I_{inj} \le 5 \text{ kA}, J_{inj} \sim 1 \text{ kA/cm}^2$

- LHI use with H-mode studies
 - Pulse extension and J(R) control

- LHI system affects edge plasma
 - Strong 3D edge current perturbation
 - Similar to LHCD on EAST¹
 - Edge biasing to modify rotation profiles

Non-solenoidal LHI Startup Mission Elements

0-D Power Balance Model Describes Relative Strengths of LHI and Inductive Current Drives

- Model elements:
 - Inputs: $\langle \eta(t) \rangle$, $R_0(t)$, shape(t), $V_{inj}(t)$, $\ell_i(t)$
 - Confinement model under development for <η(t)>
- With LFS injection and compression, induction povides significant V-sec
 - Tradeoffs between inductive contributions, transport, and geometry
- See J.L. Barr GP12.00116

$$I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0 \; ; \; I_p \leq I_{TL}$$

Divertor Injection: Vary Injector Geometry to Separate Inductive and Helicity Drive Effects

- Addresses issues for extrapolation to NSTX-U
 - Accesses higher I_p
 startup via 3-4x
 increase in V_{I,HI}
- Minimal V_{IND}: ~ fixed geometry
 - Separates effects:
 edge reconnection
 Vs. inductive drive
- Larger injector at low R_{inj}
 - Increased B_{TF} tests

(a) Present injector crosssection; (b) proposed new injector design.

Divertor Injector CAD

Projected I_p with Divertor Injection

Unstable Current Streams in Edge Consistent with NIMROD Modeling

- Internal MHD amplitude and correlation analysis of bursts consistent with interacting streams in plasma edge*
 - Coherent streams persist and intermittently reconnect at high I_p, consistent with NIMROD:

* J. O'Bryan, et al., Physics of Plasmas, 19, 080701 (2012)

 Confinement degradation from stochasticity may be localized to edge

Confinement Behavior Critical for Projections to Larger Experiments

- Peaked T_e and P_e indicate suggest good core confinement
 - Not highly stochastic across profile
 - T_e(0) comparable to 80 kA Ohmic L-mode
 - Larger high T_e volume: lower injector requirements
 - May indicate two zone confinement
 - Drive: V_{IND} (across plasma), V_{I HI} (edge)

 Experiments at higher Helicity Injection rate and varied geometry will inform projections

Critical Issues for LHI Predictive Understanding Addressed by Pegasus-Upgrade

Projected LHI Equilibrium

- Increased B_{TF}, t_{pulse} extends scalings to NSTX-U relevant levels
 - Injector $B_{TF} \sim 0.8T$: reconnection current drive; poloidal null formation; injector physics
 - Increased V_{eff}: confinement scalings
 - Pulse length ~100 ms: variable inductive drive; injector integrity
 - Injector geometry: roles of HI vs Inductive current drive
 - Diagnostics: CHERS via DNB; multi-point probe arrays, SXR camera

Implementation Status

Status: Awaiting Funding Decision

- Centerstack components ready for bids
 - Solenoid designed by PPPL
 - TF rod assembly ready for bids
 - New castle nut and coil feeds designed
 - New torque plate needed

Power systems

- Cascaded inverter conceptual design
 - Need IGBT 2nd stage silicon
- New TF power supply silicon and cap bank in house (ARRA funded)
- FPGA control software under development

TF & PF coil modifications identified

- Upgraded Divertor coils to be integrated into centersatck
- Next-gen LHI injectors fabricated; installation Winter 2015
 - 1st DIV (HFS) injector pair scheduled
 - Lower Divertor plates to be redesigned

Diagnostics

- Langmuir probe tested to pedestal top
- DNB in fabrication (free to project)
- Thomson Scattering expansion in progress (ARRA funded)

Fig. 7-46. New divertor coils and augmented poloidal field coils (PF3 and PF6)

Fig. 7-52. Logical schematic of FPGA interface instrumentation.

R&D Timeline Staged to Balance Budget Load

Campaigns	Year 1	Year 2	Year 3
Divertor-Based LHI			
Installation and First Tests			
High Field, High IP Studies			
MHD, NIMROD comparisons			
H-mode, ELM Studies			
Medium Pulse Length			
H-mode Access & Characteristics			
ELM Characteristics			
Neoclassical Tests			
ELM Suppression, Mitigation			
• 3D-MP Effects Survey			
Plasma Response Measures			
LHI-driven Perturbation Tests			
acility Developments			
Centerstack			
OH Solenoid (PPPL)			
TF Bundle & Diagnostics			
Magnet Power Supplies			
Restore OH to 12 Bridges			
Long Pulse: Cascaded Inverter			
New TF Power Supply			
LHI Power Systems			
DIV Injectors			
Long Pulse Bias Cascaded Inverter			
 Analog Gas Control & Cathode Spot Quencher 			
3D-MP System			
Design Studies			
Fabrication and Install			
Diagnostics			
Scanning Multipoint Probe Arrays			
Multipoint Thomson Scattering			

Unique AT Physics Studies Facilitated at A ~ 1 in Pegasus-U

- H-mode plasmas with pedestal diagnostic access
 - High spatio-temperal resolution across pedestal
 - Nonlinear ELM dynamics & mitigation, incl. j_{edge} mod.
 - Plasma response in pedestal region with 3-D MP coils
 - Potential tests of neoclassical theory
- Non-solenoidal startup via Local Helicity Injection
 - Divertor-LHI confinement scaling
 - NSTX-U issues: high B_{TF} ; long pulse; hi I_p confinement
 - MHD characteristics and NIMROD modeling tests
- Pegasus-U addresses physics, technology issues
 - Multi-field documentation of Pedestal and ELM dynamics
 - Initial studies of 3D-MP effects on H-mode and ELMs
 - Extension of LHI to NSTX-U relevant conditions

