
Experiment Overview 



Operation at A ~ 1 Offers Ready Access to 
Advanced Tokamak Physics 

•  Very low Bt at modest Ip = very low Pth for H-mode access 
–  High edge shear = separatrix not necessarily needed 

–  Easy access with ohmic heating only 

–  BUT need hot edge => centerstack fueling 

•  Short connection lengths and very strong trapping = 
neoclassical effects at low Te 

–  High particle trapping fractions 

–  Strongly non-Spitzer resistivity 

–  Bootstrap current possible 

•  High jedge/Bt plus H-mode pedestal = Peeling mode and 
peeling-ballooning modes accessible 

•   With short pulse and low <Te>, easy diagnostic 
accessibility 

–  e.g., probes in pedestal region 

H-mode power threshold and ohmic 
confinement scalings for PEGASUS. 

Pegasus"
equilibria"

Te(0) = 0.3 keV"

(model profiles)!

(model profiles)!
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Pegasus is a Compact, Ultralow-A ST 
Experimental Parameters 

Parameter 
A 
R(m) 
Ip (MA) 
IN (MA/m-T) 
RBt (T-m) 
! 
!shot (s) 
"t (%) 

Achieved 
1.15 – 1.3 
0.2 – 0.45  
#  .23 
6 – 14  
#  0.06 

1.4 – 3.7 
# 0.025 
# 25 

Goals 
1.12 – 1.3 
0.2 – 0.45  
#  0.30 
6 – 20  
#  0.1 

1.4 – 3.7 
# 0.05 
> 40 

Local Helicity 
Injectors 

High-stress Ohmic 
heating solenoid 

Equilibrium Field Coils 

Vacuum 
Vessel 

Toroidal 
Field 
Coils 

Ohmic Trim Coils New Divertor 
Coils 
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Device Upgrades Support Expanded Helicity 
Injection, Edge Physics Studies 

•  Helicity Injection Systems 
–  Injector  material, design optimization: reduced PMI 

–  Active fueling control 

–  Multi-aperture injector array for high-Ip startup 

•  Power Supplies, Heating, Fueling 
–  New helicity injection power: 2.2 kV, 14 kA supply 

–  Centerstack fueling: LHI fueling and H-mode access 

•  Expanded PF Coil Set and Control 
–  New PF coils, power systems:  vertical control 

•  Diagnostic Deployment and Improvements 
–  Multipoint Thomson Scattering 

–  High-speed Ti(R,t): Anomalous reconnection  
heating 

•  New divertor coils ! separatrix operation 
–  Exploit H-mode operating regime 

–  Flux expansion to optimize LHI startup 

New 
Divertor 

Coils 

Z(t) 
control 
Coils 
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Implemented Internal High-field Side Gas Valve 

•  Characteristics 
–  In-vacuum piezoelectric valve 
–  z = - 30 cm  
–  Throughput 300-3000 Torr*L/s 
–  Stabilized with heat shielding 

RJF, 2013 APS/DPP, Denver  



L" H Power Threshold as A " 1  



Power threshold required to enter H-mode 

•  Sufficient power must be applied to trigger a transition from 
L-mode to H-mode 
–  Power can be provided by NBI, ECH, ICH, LH, OH 
–  Also achieved by biasing the plasma using an external electrode or by 

biasing a limiter 
–  Pthres depends strongly on ne, BTF, and ion !B drift  direction 

•  Nature of transition is still under investigation due to lack of 
first-principles model with predictive capability 
–  E.g. predator-prey, flow shear 

RJF, 2013 APS/DPP, Denver  



L-H Power threshold scaling from experiment data 

•  Recommended scaling from Progress on ITER Physics 
Basis (2007), high–A Pthres scaling 
–  This equation has 21.4% RMSE and no ST data 

•  Earlier high-A scaling (ITPA, 2004) 
–  MAST (A $ 1.45) requires 1.6 x more power,  
     NSTX (A $ 1.32) requires 3.7 x more power 

•  More complicated: Pth has nonlinear  
    dependence on Ne 
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Y. Ma, et al, “Scaling of H-mode threshold power and L–H 
edge conditions with favourable ion grad- Bdrift in Alcator C-
Mod,” Nuclear Fusion, vol. 52, no. 2, p. 023010, 2012. 
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Different empirical scaling explicitly incorporates 
aspect ratio 
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I. H. mode Power Threshold Database and T. p. b. Takizuda, “Roles of aspect ratio, absolute B and effective Z of the H-mode power threshold in tokamaks of the 
ITPA database,” Plasma Physics and Controlled Fusion, vol. 46, no. 5A, pp. A227–A233, 2004. 

•  But this equation essentially has a 100% error bar on A, 
demonstrating more low-A data could be valuable 
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•  L-H power threshold 
scalings:   
–  At very low-A and hence    

low BT, Pth is very low 
–  Scalings1,2 suggest             

PEGASUS Pth< 0.1 MW 
–  POH = 0.2–0.7 MW 

•  Modest tshot and <Te> 
    allow probes in pedestal 

1 Accepted ITER design threshold Pth: K. Ikeda,” Nucl. Fus., 47, 2007. 
2 Pth  with low-A data: I. H. mode Power Threshold, Plasma Phys. Control. Fus., 46, 2004 

Pth ~ ne
0.7BT

0.7S

Experimental Parameters 
Parameter 

BT (T) 
A 
R (m) 
Ip (MA) 
! 
tshot (s) 
Te (eV) 

Achieved 
0.08–0.16 
1.15–1.3 
0.2–0.45  
#  0.21 
1.4–3.7 
# 0.025 
100–200 

PEGASUS POH Exceeds Pth Predictions 

RJF, 2013 APS/DPP, Denver  



H-mode in Ohmic Plasmas 



Ohmic H-mode Plasmas have 
 Standard Signatures 

•  H-mode signatures observed: 
–  Quiescent edge  
–  Increased core Te, Ti inferred 
–  Reduced D%   
–  Large and small ELMs suggested 
–  Bifurcation in &D 
–  Core v& reverses 

 

RJF, 2013 APS/DPP, Denver  



Fueling Location, Particularly in STs, is 
Critical for Achieving H-mode 

•  LFS and HFS fueling 

•  H-mode achieved using HFS 
fueling 
–  Similar to MAST and NSTX1 
–  Both limited and diverted 

HFS Fueled (H) 

Diverted (H) 

LFS Fueled (L) 
Limited 

1 A. R. Field et al,  Plasma Phys. Control. Fus., 46, 2004. 

RJF, 2013 APS/DPP, Denver  



Impurity Spectroscopy Suggests Ti and Te 
Increase in H-mode Core Region 
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•  Chord-integrated Ti(t) increases in H-phase"
•  Appearance of CV in H-phase only indicates increased Te(0,t)"

•  CV intensity is 
centrally peaked"
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Increased li Indicated by Rise in 
Paramagnetism at L-H Transition 

•  Rise in diamagnetic flux loop signal indicates 
rise in paramagnetism at A ~ 1 
–  Not a rise in total stored energy 
–  Magnetic reconstructions confirm increased li in 

H-phase  
•  H: li ~ 0.45;    L: li ~ 0.35 

•  At constant Ip, Vloop, this suggests localized 
core plasma heating 
–  Supported by indication of Te(0) increase 

H-mode indicated by "
rise in paramagnetism"

Model Equilibrium"

Paramagnetism vs li! Jtor(R) vs li!

RJF, 2013 APS/DPP, Denver  



Pth and Jedge(R) Pedestal 



Pth Measured using Vloop Scans 

•  Infer tLH from bifurcation       
in "D 
–  Vary POH = Ip Vloop 

–  Constant IEF, shape, fueling 

•  Pth ~ 0.25–0.30 MW 
–  Scalings predict < 0.1 MW 

RJF, 2013 APS/DPP, Denver  



PEGASUS Hall Probe Deployed to Measure J 

•  Solid-state InSb Hall sensors 
–  Sypris model SH-410 

 
•  16 channels, 7.5 mm radial 

resolution 

•  Slim C armor as low-Z PFC 
–  Minimizes plasma perturbation 

 

•  25 kHz bandwidth 

Bongard et al., Rev. Sci. Instrum.  81, 10E105 (2010) 
RJF, 2013 APS/DPP, Denver  



J#(R,t) Calculable Directly from Ampère’s Law 

 
 
 
•  Simplest test follows from BR(Z) or BZ(R) measurements 

•  Petty* solves for an off-midplane BZ(R) measurement set 
and an elliptical plasma cross-section: 

•  Does not make assumptions on shape of J(R) 

*: Petty, et al., Nucl. Fusion 42, 1124 (2002) 
RJF, 2013 APS/DPP, Denver  



Current Pedestal Measured  
using Hall Probe Array 

•  Internal Bz measurements 
from Hall probe array yield 
local J"(R,t)1 

•  Current gradient scale 
length significantly 
reduced in H-mode 
–  L ' H: 6 ' 2 cm 
–  (i ~ 1.8 cm 

1 M. Bongard, Rev. Sci. Instrum. 81, 10E105 (2010). 

RJF, 2013 APS/DPP, Denver  



General Observations 



Large and Small ELMs Suggestive of 
 Type I and III ELMs are Seen  

•  Filament structures observed 
–  Large ELMs infrequent and violent 

•  Can cause H-L back-transition 
•  Occur at high POH 

–  Small ELMs more ubiquitous and  
less perturbing 

•  Occur at lower POH 

 
•  n measured with close-fitting coil 

array through ELM crash 
–  PEGASUS results similar to NSTX 

•  Large (“Type I”): intermediate-n 
•  Small (“Type III”): low-n 

–  STs appear to have structure    
opposite that of ATs 

Large (Type I)"

Small (Type III)"

Coherent filaments 
associated with ELMs"

RJF, 2013 APS/DPP, Denver  



Divertor Coils Activated to Access Standard 
Separatrix-Limited H-modes 

Non-diverted:"
Centerstack Limited"

Diverted:"
Separatrix Limited"

•  Initial results: no clear difference between diverted and non-diverted 
•  But, short pulse length complicates !E measurement 

RJF, 2013 APS/DPP, Denver  



•  High-Ip, long-pulse H-mode plasmas desirable for Pegasus goals 
–  Confinement and edge stability studies 
–  Attaining high $t regime 

•  Need additional current drive   
–  LHI-initiated discharge readily couples to ohmically-driven H-mode 

 

 
 
 
 
 
 
 
 

•  But, difficult to raise Ip in ohmic phase with available V-sec 
–  May be influenced by: residual MHD activity; increasing li(t) 

•  High Ip, long-pulse operation awaits new integrated LHI assembly, power systems upgrades, 
and new OH solenoid 

LHI Startup Compatible with Consequent  
High-Quality OH H-mode 
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•  Pegasus designed to explore tokamak 
stability limits at A ~ 1 

•  Requires access to relevant space 
–  High Ip/Itf 
–  Good OH confinement 

•  Research thrusts should enable access to 
this unique stability regime 
–  LHI:  High Ip/Itf 
–  H-mode: Good OH confinement 

Non-solenoidal startup and H-mode 
Facilitates Access to high-#t Regime as A!1 
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Figure 1-7: Increase in IP/ITF as A approaches unity
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Figure 1-8: !t vs IN plot indicating the operational regimes of standard tokamaks,

the START ST, and the high !t, high IN operational regime PEGASUs has

been designed to access.
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Summary: A ~ 1 Operation Enables Studies of H-
mode Phenomena 

•  Low toroidal field at A ~ 1 facilitates access to H-mode  
–  Pth ~ 5x greater than Pth scalings’ predictions 
–  Edge current pedestal observed 

•  Large,  small ELMs observed and Jedge(R,t) dynamics measured 
–  Clear difference in toroidal mode numbers between large and small ELMs 
–  Jedge(R, t) shows current-hole perturbation during ELMs 

•  Proposed upgrades will extend studies to wider parameter space 
–  New OH solenoid: 5-6x V-sec increase (courtesy PPPL) 

•  Increased pulse length, transport equilibrium; more relaxed J(R) 

–  2x Btf increase: vary Pth; edge stability boundaries 
–  Core and edge plasma diagnostics 

•  Multipoint Thomson scattering 
•  Edge electrostatic and magnetic probes 
•  Core ion spectroscopy 

RJF, 2013 APS/DPP, Denver  



Direct J#(R) Profiles Obtained in PEGASUS 

*: Reinsch, Numerische Mathematik 10, 177 (1967) 

Bongard et al., Phys. Rev. Lett.  107, 035003 (2011) 

•  Straightforward J estimation 
–  Obtain Hall Probe Bz(R,t) 
–  Compute dBZ/dR using 

interpolated smoothing spline* 

–  Compute J#(R,t) given geometry 

•  Resultant J#(R,t) consistent 
with Ip, MHD evolution 

•  Radial span extendible with 
multi-shot averaging 

•  Higher-order shaping effects 
negligible within errors 

RJF, 2013 APS/DPP, Denver  



Type I and Type III ELMs seen in H-mode 

•  Tentatively identified via 
magnetic signatures  
–  Type I expected to have 

intermediate n modes 
–  Type III expected to have low 

n  modes 

•  Typically only one Type I 
ELM occurs in a 
discharge 

•  Many Type III ELMs occur 
in a single discharge 
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Large and Small ELMs Suggestive of 
 Type I and III ELMs are Seen  

•  Filament structures observed 
–  Large ELMs infrequent and violent 

•  Can cause H-L back-transition 
•  Occur at high POH 

–  Small ELMs more ubiquitous and  
less perturbing 

•  Occur at lower POH 

 
•  n measured with close-fitting coil 

array through ELM crash 
–  PEGASUS results similar to NSTX 

•  Large (“Type I”): intermediate-n 
•  Small (“Type III”): low-n 

–  STs appear to have structure    
opposite that of ATs 

RJF, 2013 APS/DPP, Denver  



Edge Current Pedestal Observed in H-Mode 

•  Internal B measurements from Hall 
array* yield local J"(R,t)** 

–  Map to 'N only approximate  

•  Current gradient scale length 
significantly reduced in H-mode 
L ' H: 6 ' 2 cm 

  *: M.W. Bongard et al., Rev.  Sci. Instrum. 81, 10E105 (2010) 
**: C.C. Petty et al., Nucl.  Fusion 42, 1124 ( 2002) 
 

RJF, 2013 APS/DPP, Denver  


