Experiment Overview # Operation at A ~ 1 Offers Ready Access to Advanced Tokamak Physics Pegasus equilibria 0.4 _{ΨN} 0.6 0.2 - Very low B_t at modest I_p = very low P_{th} for H-mode access - High edge shear = separatrix not necessarily needed - Easy access with ohmic heating only - BUT need hot edge => centerstack fueling Short connection lengths and very strong trapping = neoclassical effects at low T_e - Strongly non-Spitzer resistivity - Bootstrap current possible - With short pulse and low <T_e>, easy diagnostic accessibility - e.g., probes in pedestal region H-mode power threshold and ohmic confinement scalings for PEGASUS. ### Pegasus is a Compact, Ultralow-A ST #### **Experimental Parameters** | <u>Parameter</u> | Achieved | Goals | |--------------------------------------|--------------|-------------| | A | 1.15 - 1.3 | 1.12 - 1.3 | | R(m) | 0.2 - 0.45 | 0.2 - 0.45 | | $I_{p}(MA)$ | ≤ .23 | ≤ 0.30 | | I_{N}^{\prime} (MA/m-T) | 6 - 14 | 6 - 20 | | $RB_{t}(T-m)$ | ≤ 0.06 | ≤ 0.1 | | κ | 1.4 - 3.7 | 1.4 - 3.7 | | $\tau_{\rm shot}\left({ m s}\right)$ | \leq 0.025 | ≤ 0.05 | | β_{t} (%) | ≤ 25 | > 40 | | | | | # Device Upgrades Support Expanded Helicity Injection, Edge Physics Studies - Helicity Injection Systems - Injector material, design optimization: reduced PMI - Active fueling control - Multi-aperture injector array for high-I_p startup - Power Supplies, Heating, Fueling - New helicity injection power: 2.2 kV, 14 kA supply - Centerstack fueling: *LHI fueling and H-mode access* - Expanded PF Coil Set and Control - New PF coils, power systems: *vertical control* - Diagnostic Deployment and Improvements - Multipoint Thomson Scattering - High-speed T_i(R,t): Anomalous reconnection heating - New divertor coils → separatrix operation - Exploit H-mode operating regime - Flux expansion to optimize LHI startup ### Implemented Internal High-field Side Gas Valve #### Characteristics - In-vacuum piezoelectric valve - -z = -30 cm - Throughput 300-3000 Torr*L/s - Stabilized with heat shielding # L→ H Power Threshold as A → 1 #### Power threshold required to enter H-mode - Sufficient power must be applied to trigger a transition from L-mode to H-mode - Power can be provided by NBI, ECH, ICH, LH, OH - Also achieved by biasing the plasma using an external electrode or by biasing a limiter - P_{thres} depends strongly on n_e , B_{TF} , and ion ∇B drift direction - Nature of transition is still under investigation due to lack of first-principles model with predictive capability - E.g. predator-prey, flow shear #### L-H Power threshold scaling from experiment data - Recommended scaling from Progress on ITER Physics Basis (2007), high—A P_{thres} scaling - This equation has 21.4% RMSE and no ST data $$P_{PIPB} = 0.042 n_{20}^{0.73} B_{TF}^{0.74} S^{0.98}$$ - Earlier high-A scaling (ITPA, 2004) - MAST (A \approx 1.45) requires 1.6 x more power, NSTX (A \approx 1.32) requires 3.7 x more power $$P_{04} = 0.06 n_{20}^{0.7} B_{TF}^{0.7} S^{0.9}$$ More complicated: P_{th} has nonlinear dependence on N_e $$S = 4\pi^2 aR(\frac{1+\kappa^2}{2})^2$$ Y. Ma, et al, "Scaling of H-mode threshold power and L-H edge conditions with favourable ion grad- Bdrift in Alcator C-Mod," Nuclear Fusion, vol. 52, no. 2, p. 023010, 2012. # Different empirical scaling explicitly incorporates aspect ratio $$P_{thr_low-A} = 0.072 n_{20}^{0.7} |B|_{out}^{0.7} S^{0.9} \left(\frac{Z_{eff}}{2}\right)^{0.7} F(A)^{\gamma}$$ $$|B|_{out} = (B_{tout}^2 + B_{pout}^2)^{0.5}, \ B_{tout} = B_{TF} \frac{A}{A+1}, \ B_{pout} = \frac{\mu_0 I_p}{2\pi a} (1+\varepsilon),$$ $$F(A) = \frac{0.1A}{1 - \left(\frac{2}{1+A}\right)^{0.5}} \qquad and \quad \gamma = 0.5 \pm 0.5$$ But this equation essentially has a 100% error bar on A, demonstrating more low-A data could be valuable I. H. mode Power Threshold Database and T. p. b. Takizuda, "Roles of aspect ratio, absolute B and effective Z of the H-mode power threshold in tokamaks of the ITPA database," Plasma Physics and Controlled Fusion, vol. 46, no. 5A, pp. A227–A233, 2004. ### PEGASUS P_{OH} Exceeds P_{th} Predictions - L-H power threshold scalings: $P_{th} \sim n_e^{0.7} B_T^{0.7} S$ - At very low-A and hence low B_T, P_{th} is very low - Scalings^{1,2} suggest PEGASUS P_{th}< 0.1 MW - $-P_{OH} = 0.2-0.7 \text{ MW}$ - Modest t_{shot} and <T_e> allow probes in pedestal | Experimental Parameters | | | | | |-------------------------|-----------------|--|--|--| | <u>Parameter</u> | <u>Achieved</u> | | | | | $B_{T}(T)$ | 0.08-0.16 | | | | | A | 1.15–1.3 | | | | | R (m) | 0.2-0.45 | | | | | $I_{p}(MA)$ | ≤ 0.21 | | | | | ĸ | 1.4–3.7 | | | | | $t_{shot}(s)$ | ≤ 0.025 | | | | | $T_{\rm e}({\rm eV})$ | 100–200 | | | | ¹ Accepted ITER design threshold P_{th}: K. Ikeda," Nucl. Fus., **47,** 2007. ²P_{th} with low-A data: I. H. mode Power Threshold, Plasma Phys. Control. Fus., **46**, 2004 ### H-mode in Ohmic Plasmas # Ohmic H-mode Plasmas have Standard Signatures #### H-mode signatures observed: - Quiescent edge - Increased core T_e, T_i inferred - Reduced D_α - Large and small ELMs suggested - Bifurcation in ϕ_D - Core v_{ϕ} reverses # Fueling Location, Particularly in STs, is Critical for Achieving H-mode LFS and HFS fueling - H-mode achieved using HFS fueling - Similar to MAST and NSTX¹ - Both limited and diverted ¹ A. R. Field et al, Plasma Phys. Control. Fus., 46, 2004. #### Limited LFS Fueled (L) HFS Fueled (H) Diverted (H) # Impurity Spectroscopy Suggests T_i and T_e Increase in H-mode Core Region - Chord-integrated T_i(t) increases in H-phase - Appearance of CV in H-phase only indicates increased $T_e(0,t)$ - CV not present in L-mode discharges - CV I.P. = 392 eV - OV I.P. = 113 eV #### CV intensity is centrally peaked # Increased *I_i* Indicated by Rise in Paramagnetism at L-H Transition - Rise in diamagnetic flux loop signal indicates rise in paramagnetism at A ~ 1 - Not a rise in total stored energy - Magnetic reconstructions confirm increased l_i in H-phase - H: $I_i \sim 0.45$; L: $I_i \sim 0.35$ - At constant I_p, V_{loop}, this suggests localized core plasma heating - Supported by indication of $T_e(0)$ increase ### H-mode indicated by rise in paramagnetism #### Equilibrium Parameters Shot 12345, 0.000 ms | | 01101 120 10, 0.000 1110 | | | | |----------------|--------------------------|----------|-------|--| | I _D | 150 kA | R_0 | 0.354 | | | β_t | 0.0035 | а | 0.299 | | | ℓ_i | 0.54 | Α | 1.18 | | | β_p | 0.019 | κ | 1.7 | | | W | 1101 J | δ | 0.43 | | | B_{T0} | 0.177 T | q_{95} | 11.6 | | # P_{th} and $J_{edge}(R)$ Pedestal ## Pth Measured using Vloop Scans - Infer t_{LH} from bifurcation in ϕ_D - Vary $P_{OH} = I_p V_{loop}$ - Constant I_{EF}, shape, fueling - $P_{th} \sim 0.25-0.30 \text{ MW}$ - Scalings predict < 0.1 MW ### PEGASUS Hall Probe Deployed to Measure J - Solid-state InSb Hall sensors - Sypris model SH-410 - 16 channels, 7.5 mm radial resolution - Slim C armor as low-Z PFC - Minimizes plasma perturbation - 25 kHz bandwidth ### J₀(R,t) Calculable Directly from Ampère's Law $$\mu_0 J_{\phi} = (\nabla \times \mathbf{B})_{\phi} = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$ - Simplest test follows from B_R(Z) or B_Z(R) measurements - Petty* solves for an off-midplane B_Z(R) measurement set and an elliptical plasma cross-section: $$\mu_0 J_{\phi} = -\frac{B_Z}{\kappa^2 (R - R_0)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R (R - R_0)^2} \right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 (R - R_0)^2} \right)$$ Does not make assumptions on shape of J(R) # Current Pedestal Measured using Hall Probe Array • Internal B_z measurement from Hall probe array yie $\frac{30}{5}$ local J_b(R,t)¹ Current gradient scale length significantly reduced in H-mode $$-L \rightarrow H: 6 \rightarrow 2 cm$$ $$-\rho_i \sim 1.8$$ cm ¹ M. Bongard, Rev. Sci. Instrum. **81**, 10E105 (2010). ## **General Observations** ### Large and Small ELMs Suggestive of Type I and III ELMs are Seen - Filament structures observed - Large ELMs infrequent and violent - Can cause H-L back-transition - Occur at high P_{OH} - Small ELMs more ubiquitous and less perturbing - Occur at lower P_{OH} - n measured with close-fitting coil array through ELM crash - PEGASUS results similar to NSTX - Large ("Type I"): intermediate-n - Small ("Type III"): low-n - STs appear to have structure opposite that of ATs Large (Type I) Coherent filaments associated with ELMs # Divertor Coils Activated to Access Standard Separatrix-Limited H-modes Non-diverted: Centerstack Limited Diverted: Separatrix Limited - Initial results: no clear difference between diverted and non-diverted - But, short pulse length complicates τ_E measurement # LHI Startup Compatible with Consequent High-Quality OH H-mode - High-Ip, long-pulse H-mode plasmas desirable for Pegasus goals - Confinement and edge stability studies - Attaining high β_t regime - Need additional current drive - LHI-initiated discharge readily couples to ohmically-driven H-mode - But, difficult to raise I_p in ohmic phase with available V-sec - May be influenced by: residual MHD activity; increasing $l_i(t)$ - High I_p, long-pulse operation awaits new integrated LHI assembly, power systems upgrades, and new OH solenoid # Non-solenoidal startup and H-mode Facilitates Access to high-β_t Regime as A→1 - Pegasus designed to explore tokamak stability limits at A ~ 1 - Requires access to relevant space - High I_p/I_{tf} - Good OH confinement - Research thrusts should enable access to this unique stability regime - LHI: High I_p/I_{tf} - H-mode: Good OH confinement # Summary: A ~ 1 Operation Enables Studies of H-mode Phenomena - Low toroidal field at A ~ 1 facilitates access to H-mode - $-P_{th} \sim 5x$ greater than P_{th} scalings' predictions - Edge current pedestal observed - Large, small ELMs observed and J_{edge}(R,t) dynamics measured - Clear difference in toroidal mode numbers between large and small ELMs - J_{edge}(R, t) shows current-hole perturbation during ELMs - Proposed upgrades will extend studies to wider parameter space - New OH solenoid: 5-6x V-sec increase (courtesy PPPL) - Increased pulse length, transport equilibrium; more relaxed J(R) - $-2x B_{tf}$ increase: vary P_{th} ; edge stability boundaries - Core and edge plasma diagnostics - Multipoint Thomson scattering - Edge electrostatic and magnetic probes - Core ion spectroscopy ### Direct J_o(R) Profiles Obtained in PEGASUS - Straightforward J estimation - Obtain Hall Probe $B_z(R,t)$ - Compute dB_Z/dR using interpolated smoothing spline* - Compute $J_{\phi}(R,t)$ given geometry - Resultant J_φ(R,t) consistent with I_p, MHD evolution - Radial span extendible with multi-shot averaging - Higher-order shaping effects negligible within errors Bongard et al., Phys. Rev. Lett. 107, 035003 (2011) ### Type I and Type III ELMs seen in H-mode - Tentatively identified via magnetic signatures - Type I expected to have intermediate n modes - Type III expected to have low n modes - Typically only one Type I ELM occurs in a discharge - Many Type III ELMs occur in a single discharge ### Large and Small ELMs Suggestive of Type I and III ELMs are Seen - Filament structures observed - Large ELMs infrequent and violent - · Can cause H-L back-transition - Occur at high P_{OH} - Small ELMs more ubiquitous and less perturbing - Occur at lower P_{OH} - n measured with close-fitting coil array through ELM crash - PEGASUS results similar to NSTX - Large ("Type I"): intermediate-n - Small ("Type III"): low-n - STs appear to have structure opposite that of ATs ### Edge Current Pedestal Observed in H-Mode - Internal B measurements from Hall array* yield local J_Φ(R,t)** - Map to ψ_N only approximate - Current gradient scale length significantly reduced in H-mode $$L \rightarrow H: 6 \rightarrow 2 \text{ cm}$$ *: M.W. Bongard et al., Rev. Sci. Instrum. 81, 10E105 (2010) **: C.C. Petty et al., Nucl. Fusion 42, 1124 (2002)