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Local Helicity Injection uses LFS Injection Plus 
Poloidal Induction for ST Startup 

•  Flexible injector geometry 

•  Startup sequence: 
–  PF field weakened by current streams 
–  Relaxation to tokamak-like state 
–  Rapid inward expansion and growth in 

Ip at low A 
–  Poloidal field induction adds to 

current growth 

•  Goal:0.3 MA non-solenoidal Ip  
–  To test confinement and extrapolate to 

next level, such as NSTX-U 
–  Issues: jedge, Zinj, confinement, injector 

technology, etc. 
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Local Helicity Injection Offers Scalable 
Nonsolenoidal Startup 
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•  Inject Helicity for Ip startup using electron current source 
at the tokamak plasma edge 
–  Helicity balance via resistive dissipation losses: 

–  Max Ip via relaxation to Taylor (constant λ) state: 
 

 

 

 

 

 

•  Maximizing Ip requires: 
•  Large helicity input rate: High Ainj, Vinj 

•  High relaxation limit: High Iinj, & BTF, low w 
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Exploring Passive Injectors to Increase Area 
for Higher Helicity Injection Rates 

•  Mitigate cost/complexity of producing high 
electron current: passive current sources? 
–  Step 1: Form tokamak-like state with active arc gun 

–  Iinj ~ 2-4 kA; Ainj ~ 4-6 cm2 

–  Step 2: Increase Ip via electrodes in edge plasma 
–  Iinj ~ 12 kA; Ainj ~ 60 cm2 

 

 

•  First tests are promising 
–  Arc current off after relaxation to tokamak-like state 
–  Ip(t) is the same 
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Gas-Fed, Large-Area Electrode May 
Mitigate Requirement for Arc Sources 

•  Need to spread Iinj across large area 
–  Effective area of metallic electrode = small → low HI rate 

 
•  Gas-fed hollow cathode electrode to provide required large-area 

source of charge carriers 
–  In edge of tokamak plasma 
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Predictive Impedance Models Required to 
Project to Future Startup Systems 

•  Double-sheath space-charge limits Iinj at low 
Iinj, Vinj 

 

•  Magnetic current limit at high Iinj > IA and Vinj 
> 10 kTe/e 

–  With possible current profile variations 
–  Sheath expansion may also contribute here 
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HI Physics: Poloidal Null Formation 
During Relation to Tokamak Verified 

•  (a) Bz(R,t) shows expected* 
poloidal null formation 

 

•  (b) JT(R,t) shows core current 
buildup 
–  Plasma moves inward (red -> 

green) 
–  J = typical peaked tokamak profile 

after detachment (yellow) 

Iφ = 0 A Iφ = 4 kA 
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*D. J. Battaglia, et al., Nucl. Fusion, 51, 073029, 2011 
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HI Physics: n=1 Mode Correlates with 
Rise in Plasma Current 

•  Bursty and continuous n=1 
mode coincident with rises in Ip 
–  Similar to that seen in HI-driven 

spheromaks and tokamaks 
–  n=1 MHD power peaked at 16 kHz 

•  Power peaked at current 
injector radius 
–  From internal Bz(R,t) measures 

•  Toroidally asymmetric 
–  Follows injector location 
–  Tentatively: line-tied kink mode 
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HI Physics: Strong Ion Heating Correlates 
with MHD Amplitude and Power Input 

•  Strong ion heating observed via 
impurity lines during helicity injection 

–  Radially integrated spectroscopy 
–  VUV spectroscopy: Te ~ 50 eV or so 

•  Heating correlates with n = 1 activity 

•  Ti� > Ti|| 
•  Similar to that seen on MST with large 

reconnection during sawtooth crash 
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Access to Ohmic H-Mode may help Current 
Drive Following Nonsolenoidal Startup 

•  Ohmic H-mode via centerstack fueling 
–  Ip ~ 0.12 MA 

 
•  Pedestal in j(R,t) observed 

–  Internal B measurements from Hall array* 
yield local Jϕ(R,t)** 

 
•  Gradient scale length significantly 

reduced in H mode 
–  L → H: 6 → 2 cm 

  *: M.W. Bongard et al., Rev.  Sci. Instrum. 81, 10E105 (2010) 
**: C.C. Petty et al., Nucl.  Fusion 42, 1124 ( 2002) 
 



Summary: Progress in Developing Local Helicity 
Injection for ST Startup 

•  Local current sources support non-solenoidal startup of ST and other 
confinement devices 

–  NSTX-U class power systems deployed on Pegasus 

–  Preliminary: gas-fed electrodes may be combined with plasma arc sources to drive high Ip 

•  Arc source impedance, and helicity injection rate, appear to be governed by 
sheath effects and magnetic current limits 

 

•  Plasma properties during helicity injection similar to other reconnecting 
plasmas 

–  N=1 MHD activity related to current buildup 

–  Current buildup and poloidal null formation 
–  Anomalous ion heating during reconnection 

•  Ohmic H-mode attained: may aid startup studies 
–  J(R,t) pedestal and perturbations during ELM readily observed 
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Related Posters for Details 
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