

Performance and Stability Limits at Near-unity Aspect Ratio in the PEGASUS Experiment*

43rd Annual Meeting of the Division of Plasma Physics
October 29 - November 2, 2001
Long Beach, California

R. J. Fonck for the PEGASUS Experiment Team

Department of Engineering Physics

University of Wisconsin-Madison

This Session

GO1 15 Sontag - Equilibrium and Stability Analysis

Poster Session - Thursday Afternoon

RP1 33 Unterberg - Characteristics of OH Plasmas

RP1 34 Garstka - MHD Analysis

RP1 35 Diem - Magnetic Reconstruction & Stability

RP1 36 Tritz - q(0) via SXR Imaging

RP1 37 Probert - HHFW

RP1 38 Ostrander - T_e(0,t) via Multi-Color SXR

RP1 39 Schooff - T_e(R,t) via CCD/PHA

RP1 40 Lewicki - Facility Development

^{*(}U.S. DoE Grant No. DE-FG02-96ER54375)

Role of the Pegasus Experiment in the Fusion Science Program

An extremely low-aspect ratio facility exploring quasi-spherical highpressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability.

• Plasma properties in Spherical Torus as $A \rightarrow 1$

- β and I_p limits, disruptivity, and confinement dependence on A, κ , etc.
- New startup schemes (e.g., plasma gun current injection, EBW/ECH)

• Physics of A \rightarrow 1 plasmas as an Alternate Concept

- MHD equilibrium and stability at very low TF ($\beta \sim 1$)
- Explore RF heating and CD schemes (HHFW, EBW)

High TF utilization $(I_P/I_{TF} > 3)$ \Rightarrow Tokamak-Spheromak overlap

Program Developments in 2001 Campaign

Developing understanding of limits of operation at very low A and low TF

- Gain capability to explore high- β_t , low- q_a regimes

Facility development

- Increasing ohmic drive capability: I_p up to 150 kA
- New internal hardware and pfc's
- Diagnostics and analysis tools
- Initial operation of HHFW heating system

Experimental Campaign

- Improved plasma formation control
- Extension to higher Ip capability
- Documentation of equilibrium parameters at very low A
- Identification of factors hindering access to low B_t, high I_p
 - V-sec availability
 - Large-scale internal MHD activity
- Demonstrate access to external kink limit at low β_N

Identify paths for next campaign

- Increased V-sec
- High power RF heating
- Increased B_t with fast rampdown

Facility Upgrades Installed in Major Opening in Fall/Winter 2001

- Internal diagnostics installed
 - Flux loops; B_{pol} arrays; Centerstack magnetics; New Rogowski coils

- Improved plasma facing components
 - Divertor plates
 - High-power outer limiter
 - New centerstack shield / cone structure

- HHFW and EBW antennae
 - $P_{RF-HHFW} \approx 1 \text{ MW}$
 - Steerable EBW/ECH antenna

Increasing Diagnostic Capabilities Deployed

Presently operating

Diagnostic	Capability	Measures
Core Flux Loops	(6)	V_{L} , Ψ_{pol}
Wall Flux loops	(6)	Vessel currents
Int. Flux loops	(20)	Ψ_{pol}
Rogowski Coils	(2)	I _p
Diamagnetic Loop	(2)	$\stackrel{\cdot}{\Phi}_{tor}$ / β_{p}
B _p , Mirnov Coils	(56)	B _r , B _z / MHD activity
VUV (SPRED)	5000 fps	Impurity monitor
Filterscopes	central chord	Oxygen, Carbon, D $_{\!lpha}$
Interferometer	single chord	N_e 1
High Res. Camera	1000 fps	Plasma shape/position
2-D SXR Camera		Internal Shape/ j(R)

Primary analysis tools operational

Equilibrium Code	R, a, \downarrow , β , κ , etc.
DCON	Stability analysis

Near-future

Diagnostic	Capability	Measures	When?	
Poloidal SXR Diode Array	(19)	MHD Activity	Winter 2001	
Tangential CCD PHA	single chord	$T_{e}(t)$	Winter 2001	
Tangential Bolometer Array	~20 chord	P _{rad}	Winter 2001	
Ross Filters	single chord	$T_{e0}(t)$	Winter 2001	
2-Color X-ray	single chord	T _e	Winter 2001	
Tangential VB Array	~20 chord	$Z_{eff}(R,t), N_{e}(R,t)$	Summer 2002	
DNB		$N_e(R,t), T_e(R,t), j(R)$	Proposed	
EBW Radiometer		$T_{e}(t)$	Proposed	

Pegasus Allows Access to Interesting Low-A Regime

- Routine high-stress solenoid operation
- Startup at low B_t in presence of conducting walls
 - Induced wall currents modeled
 - Wall currents routinely included in equilibrium runs
- Plasmas show low-A characteristics

- 1	Low A	$A \longrightarrow A$	~	1.1	6
-		*			0

-
$$High \beta_t$$
 $\beta_t \sim 25\%$

-
$$High \beta_N$$
 $\beta_N \sim 5$

- High TF utilization factor
$$I_p/I_{TF} \sim 1.2$$

- High normalized current
$$I_N \sim 8$$

- High density
$$n_e \sim n_{GW}$$

- Identification of factors hindering access to lower B_t
 - V-sec availability
 - Large-scale MHD activity

Pegasus Accesses High-βt ST Regime

• High β_t attained at high density, low-TF

- Ohmic heating only; constant TF
- Highest β_t , I_N at low TF (~0.05 T)
- So far, limited by discharge evolution

High Density, Low I_i, Low-TF Operation

Pegasus Toroidal Experiment University of Wisconsin-Madison

MHD Activity Appears to Hinder Access to low-TF, high-β_t regime

- Access to high I_p/I_{TF} , low- q_{95} , high β_t regimes requires identification and suppression
- Evaluating role of MHD on access to low-TF OH regime
 - Correlate appearance with estimated q(0,t) evolution
 - Use flux consumption analysis for quantitative comparison Ejima Coefficient, $C_e = high \Rightarrow poor$ use of Ohmic V-sec Ejima Coefficient, $C_e = low \Rightarrow efficient$ use of V-sec
- Large Scale Internal Resistive MHD ⇔ Reduced I_p, C_e ~ 1
 - Internal modes appears to limit I_p in these cases
 - Mode is a large 2/1; observed when q_0 drops below 2
 - Appears to correlate with a <u>large low-shear interior region</u> with $q \le 2$
- External Kink Observed ⇔ max I_p, C_e ~ 0.5
 - External kink and/or V-sec limit at highest I_p, B_t cases
 - Appears as q_{95} approaches 5; higher than typical tokamak

Higher-Current Discharges Exhibit a Variety of MHD activity

- 2/1 mode is observed but disappears
 - Pass through $q(0) \approx 2$ region
- A 3/2 mode appears after a quiescent period
 - Correlated with q(0) dropping below 1.5

- Higher I_D accessed by discharge tailoring
 - Increased loop voltage
 - Edge cooling through aggressive gas puffing

Large 2/1 MHD Activity Degrades Plasma Evolution

Starting to Challenge External Kink Limits

- Higher-I_p discharges often terminate in abrupt disruptions
 - Precursor fluctuations observed on Mirnov coils
 - Lower-I_p shots have IREs, followed by gradual plasma termination

- Observed disruptions are associated with edge q-limits
 - Oscillations not observed until $q_{95} \approx 5$
- Consistent with theoretical understanding of ideal kink stability
 - DCON & VACUUM: Plasma-vacuum energy $\rightarrow 0$ as fluctuations begin
 - As $A \rightarrow 1$, stable q_a increases

HHFW Heating Provides New Tool

HHFW system installed and heating tests underway

- $P_{RF} = 1-2$ MW available; sufficient to access high β_t regime
- Initial loading tests give an impedance of about 1 Ohm
- $P_{RF} \approx 100 \text{ kW to date}$ (Poster RP1.037 by P. Probert)

~ 50 ms test into dummy load

HHFW applications:

- MHD control: electron heating; reduce resistivity earlier
- Startup assist via preheating and/or current profile "freezing"
 - Startup plasma phase: 40% single pass absorption
 - High β plasma phase: 100% single pass absorption
- CD possible with present power supply and new antenna

Facility Upgrades Will Increase Access to low-q₉₅, high β_t Plasmas

Goals:

Increased control of plasma conditions

- Density control, reproducibility, improved equilibrium field control

• Suppression of large internal resistive MHD modes

- Increased I_p ramp time_
- Attain higher $T_e(0)$ during formation
- Maintain q(0) > 2 during formation

Control onset of suspected external kink modes

- $Maintain I_p$ ramp time
- Maintain high q₉₅ during formation
- Edge control: edge cooling, shear, etc.

• Access to very high β_T regime

- Increase I_p , N_e , T_{e-}
- Improved access to low- B_t regime

Tools to achieve goals in near future:

- Between-shot gettering
- Increased V-sec
- Increased B_T w/fast-rampdown
- Increased RF power
- Energize divertor coils

Proposed long-term improvements to add control flexibility

- Programmable internal radial position coils and divertor coils
- EBW heating and startup tests

- Facility and analysis developments ⇒ increased capability
 - Internal hardware, wall conditioning, field programming
 - Magnetics diagnostic array and equilibrium analysis
- Plasma equilibria show low-A characteristics

- $\beta_t \sim 25\%$

 $\beta_N \sim 5$

- $I_p/I_{TF} \sim 1.2$

*I*_N ~ 8

- $n_e \sim n_{GW}$

 $A \approx 1.16$

- 2/1, 3/2, double tearing modes, IREs, external kink
- Access to low-B_t, low-A operation: configuration and physics
 - V-sec capability can limit access to interesting physics
 - Large internal modes (2/1, 3/2) degrade plasma evolution
 - Susceptible due to large, low shear region and low Te?
- Evidence of access to external kink emerging
- Next campaign: focus on MHD control and challenge limits
 - High power RF heating
 - Increased B_t with fast rampdown
 - Increased V-sec
 - Separatrix operation

Pegasus Experiment Group

Pegasus Personnel - Experiment Team:

Staff:

G. Garstka

B. Lewicki

G. Winz

R. Fonck

P. Nonn (+ MST) P. Probert (+ HSX)

B. Ford (+ MST)

Graduate Students:

C. Ostrander

R. Schooff

A. Sontag

K. Tritz

E. Unterberg

Undergraduates:

S. Diem

B. Kiedrowski

M. Reinke

J. Boerner

A. Olig

D. Schuster

P. Reinecke

Associated Theory (CPTC)

J. Callen

C. Sovinec

C. Hegna