Performance and Stability Limits at Near-unity Aspect Ratio in the PEGASUS Experiment* 43rd Annual Meeting of the Division of Plasma Physics October 29 - November 2, 2001 Long Beach, California R. J. Fonck for the PEGASUS Experiment Team Department of Engineering Physics University of Wisconsin-Madison #### This Session GO1 15 Sontag - Equilibrium and Stability Analysis ### Poster Session - Thursday Afternoon RP1 33 Unterberg - Characteristics of OH Plasmas RP1 34 Garstka - MHD Analysis RP1 35 Diem - Magnetic Reconstruction & Stability RP1 36 Tritz - q(0) via SXR Imaging RP1 37 Probert - HHFW RP1 38 Ostrander - T_e(0,t) via Multi-Color SXR RP1 39 Schooff - T_e(R,t) via CCD/PHA RP1 40 Lewicki - Facility Development ^{*(}U.S. DoE Grant No. DE-FG02-96ER54375) ## Role of the Pegasus Experiment in the Fusion Science Program An extremely low-aspect ratio facility exploring quasi-spherical highpressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability. ### • Plasma properties in Spherical Torus as $A \rightarrow 1$ - β and I_p limits, disruptivity, and confinement dependence on A, κ , etc. - New startup schemes (e.g., plasma gun current injection, EBW/ECH) ### • Physics of A \rightarrow 1 plasmas as an Alternate Concept - MHD equilibrium and stability at very low TF ($\beta \sim 1$) - Explore RF heating and CD schemes (HHFW, EBW) High TF utilization $(I_P/I_{TF} > 3)$ \Rightarrow Tokamak-Spheromak overlap ## Program Developments in 2001 Campaign ### Developing understanding of limits of operation at very low A and low TF - Gain capability to explore high- β_t , low- q_a regimes ### Facility development - Increasing ohmic drive capability: I_p up to 150 kA - New internal hardware and pfc's - Diagnostics and analysis tools - Initial operation of HHFW heating system ### Experimental Campaign - Improved plasma formation control - Extension to higher Ip capability - Documentation of equilibrium parameters at very low A - Identification of factors hindering access to low B_t, high I_p - V-sec availability - Large-scale internal MHD activity - Demonstrate access to external kink limit at low β_N ### Identify paths for next campaign - Increased V-sec - High power RF heating - Increased B_t with fast rampdown # Facility Upgrades Installed in Major Opening in Fall/Winter 2001 - Internal diagnostics installed - Flux loops; B_{pol} arrays; Centerstack magnetics; New Rogowski coils - Improved plasma facing components - Divertor plates - High-power outer limiter - New centerstack shield / cone structure - HHFW and EBW antennae - $P_{RF-HHFW} \approx 1 \text{ MW}$ - Steerable EBW/ECH antenna # Increasing Diagnostic Capabilities Deployed ### Presently operating | Diagnostic | Capability | Measures | |-------------------------------|-------------------|--| | Core Flux Loops | (6) | V_{L} , Ψ_{pol} | | Wall Flux loops | (6) | Vessel currents | | Int. Flux loops | (20) | Ψ_{pol} | | Rogowski Coils | (2) | I _p | | Diamagnetic Loop | (2) | $\stackrel{\cdot}{\Phi}_{tor}$ / β_{p} | | B _p , Mirnov Coils | (56) | B _r , B _z / MHD activity | | VUV (SPRED) | 5000 fps | Impurity monitor | | Filterscopes | central chord | Oxygen, Carbon, D $_{\!lpha}$ | | Interferometer | single chord | N_e 1 | | High Res. Camera | 1000 fps | Plasma shape/position | | 2-D SXR Camera | | Internal Shape/ j(R) | ### Primary analysis tools operational | Equilibrium Code | R, a, \downarrow , β , κ , etc. | |------------------|--| | DCON | Stability analysis | #### Near-future | Diagnostic | Capability | Measures | When? | | |----------------------------|-------------------|----------------------------|-------------|--| | Poloidal SXR Diode Array | (19) | MHD Activity | Winter 2001 | | | Tangential CCD PHA | single chord | $T_{e}(t)$ | Winter 2001 | | | Tangential Bolometer Array | ~20 chord | P _{rad} | Winter 2001 | | | Ross Filters | single chord | $T_{e0}(t)$ | Winter 2001 | | | 2-Color X-ray | single chord | T _e | Winter 2001 | | | Tangential VB Array | ~20 chord | $Z_{eff}(R,t), N_{e}(R,t)$ | Summer 2002 | | | DNB | | $N_e(R,t), T_e(R,t), j(R)$ | Proposed | | | EBW Radiometer | | $T_{e}(t)$ | Proposed | | ## Pegasus Allows Access to Interesting Low-A Regime - Routine high-stress solenoid operation - Startup at low B_t in presence of conducting walls - Induced wall currents modeled - Wall currents routinely included in equilibrium runs - Plasmas show low-A characteristics | - 1 | Low A | $A \longrightarrow A$ | ~ | 1.1 | 6 | |-----|-------|-----------------------|---|-----|---| | - | | * | | | 0 | - $$High \beta_t$$ $\beta_t \sim 25\%$ - $$High \beta_N$$ $\beta_N \sim 5$ - High TF utilization factor $$I_p/I_{TF} \sim 1.2$$ - High normalized current $$I_N \sim 8$$ - High density $$n_e \sim n_{GW}$$ - Identification of factors hindering access to lower B_t - V-sec availability - Large-scale MHD activity ## Pegasus Accesses High-βt ST Regime ### • High β_t attained at high density, low-TF - Ohmic heating only; constant TF - Highest β_t , I_N at low TF (~0.05 T) - So far, limited by discharge evolution ### High Density, Low I_i, Low-TF Operation Pegasus Toroidal Experiment University of Wisconsin-Madison ## MHD Activity Appears to Hinder Access to low-TF, high-β_t regime - Access to high I_p/I_{TF} , low- q_{95} , high β_t regimes requires identification and suppression - Evaluating role of MHD on access to low-TF OH regime - Correlate appearance with estimated q(0,t) evolution - Use flux consumption analysis for quantitative comparison Ejima Coefficient, $C_e = high \Rightarrow poor$ use of Ohmic V-sec Ejima Coefficient, $C_e = low \Rightarrow efficient$ use of V-sec - Large Scale Internal Resistive MHD ⇔ Reduced I_p, C_e ~ 1 - Internal modes appears to limit I_p in these cases - Mode is a large 2/1; observed when q_0 drops below 2 - Appears to correlate with a <u>large low-shear interior region</u> with $q \le 2$ - External Kink Observed ⇔ max I_p, C_e ~ 0.5 - External kink and/or V-sec limit at highest I_p, B_t cases - Appears as q_{95} approaches 5; higher than typical tokamak ## Higher-Current Discharges Exhibit a Variety of MHD activity - 2/1 mode is observed but disappears - Pass through $q(0) \approx 2$ region - A 3/2 mode appears after a quiescent period - Correlated with q(0) dropping below 1.5 - Higher I_D accessed by discharge tailoring - Increased loop voltage - Edge cooling through aggressive gas puffing # Large 2/1 MHD Activity Degrades Plasma Evolution ### Starting to Challenge External Kink Limits - Higher-I_p discharges often terminate in abrupt disruptions - Precursor fluctuations observed on Mirnov coils - Lower-I_p shots have IREs, followed by gradual plasma termination - Observed disruptions are associated with edge q-limits - Oscillations not observed until $q_{95} \approx 5$ - Consistent with theoretical understanding of ideal kink stability - DCON & VACUUM: Plasma-vacuum energy $\rightarrow 0$ as fluctuations begin - As $A \rightarrow 1$, stable q_a increases ### **HHFW Heating Provides New Tool** ### HHFW system installed and heating tests underway - $P_{RF} = 1-2$ MW available; sufficient to access high β_t regime - Initial loading tests give an impedance of about 1 Ohm - $P_{RF} \approx 100 \text{ kW to date}$ (Poster RP1.037 by P. Probert) ~ 50 ms test into dummy load ### HHFW applications: - MHD control: electron heating; reduce resistivity earlier - Startup assist via preheating and/or current profile "freezing" - Startup plasma phase: 40% single pass absorption - High β plasma phase: 100% single pass absorption - CD possible with present power supply and new antenna ## Facility Upgrades Will Increase Access to low-q₉₅, high β_t Plasmas #### Goals: ### Increased control of plasma conditions - Density control, reproducibility, improved equilibrium field control ### • Suppression of large internal resistive MHD modes - Increased I_p ramp time_ - Attain higher $T_e(0)$ during formation - Maintain q(0) > 2 during formation ### Control onset of suspected external kink modes - $Maintain I_p$ ramp time - Maintain high q₉₅ during formation - Edge control: edge cooling, shear, etc. ### • Access to very high β_T regime - Increase I_p , N_e , T_{e-} - Improved access to low- B_t regime ### Tools to achieve goals in near future: - Between-shot gettering - Increased V-sec - Increased B_T w/fast-rampdown - Increased RF power - Energize divertor coils ### Proposed long-term improvements to add control flexibility - Programmable internal radial position coils and divertor coils - EBW heating and startup tests - Facility and analysis developments ⇒ increased capability - Internal hardware, wall conditioning, field programming - Magnetics diagnostic array and equilibrium analysis - Plasma equilibria show low-A characteristics - $\beta_t \sim 25\%$ $\beta_N \sim 5$ - $I_p/I_{TF} \sim 1.2$ *I*_N ~ 8 - $n_e \sim n_{GW}$ $A \approx 1.16$ - 2/1, 3/2, double tearing modes, IREs, external kink - Access to low-B_t, low-A operation: configuration and physics - V-sec capability can limit access to interesting physics - Large internal modes (2/1, 3/2) degrade plasma evolution - Susceptible due to large, low shear region and low Te? - Evidence of access to external kink emerging - Next campaign: focus on MHD control and challenge limits - High power RF heating - Increased B_t with fast rampdown - Increased V-sec - Separatrix operation ### Pegasus Experiment Group ### **Pegasus Personnel - Experiment Team:** Staff: G. Garstka B. Lewicki G. Winz R. Fonck P. Nonn (+ MST) P. Probert (+ HSX) B. Ford (+ MST) Graduate Students: C. Ostrander R. Schooff A. Sontag K. Tritz E. Unterberg **Undergraduates:** S. Diem B. Kiedrowski M. Reinke J. Boerner A. Olig D. Schuster P. Reinecke Associated Theory (CPTC) J. Callen C. Sovinec C. Hegna