Non-inductive Startup Using Localized Washer Gun Current Sources on the PEGASUS Toroidal Experiment

N.W. Eidietis University of Wisconsin - Madison

ICC 2007 College Park, MD February 12, 2006

Overview: Localized Current Sources Provide Non-Inductive Tokamak Startup

- Non-inductive startup desired for tokamaks
 - ST's: Limited ohmic drive capability
 - Tokamak Reactor: Removing solenoid eases design
- Washer gun current sources installed in lower divertor region for DC helicity injection
- Injected current relaxes to ST-like plasma
 - I_p ≤ 50 kA driven by I_{Inj} ≤ 4kA
 - Consistent w/ helicity conservation
- Guns modify j(r): Allow access to $I_p/I_{TF} > 2$
 - $_{-}$ $I_{TF} = TF \text{ rod current}$
 - $I_N > 12 \text{ MA/m-T}$

Conditions for Non-Inductive Formation of Tokamak Plasma

- Tokamak plasma formation must satisfy 3 constraints
 - Helicity conservation
 - Tokamak confinement scaling
 - Consistency with magnetic geometry and equilibrium
- Helicity and confinement requirements interconnected (next slide)
 - Both place requirements on source
- 3 magnetic constraints
 - Local field structure avoids current streams hitting other guns
 - PF weak enough to allow flux surface closure of plasma gun injected current
 - PF strong enough to maintain MHD equilibrium

Helicity Conservation, Confinement Properties Should be Self-Consistent

Time derivative of helicity¹:

$$\dot{K}_{Tok} = -2 \int_{V} \mathbf{E} \cdot \mathbf{B} d^{3}x + 2V_{loop} \Phi_{T} - 2 \int_{A} V_{Inj} \mathbf{B} \cdot d\mathbf{a}$$
Resistive AC DC
Dissipation Injection Injection

Equating AC & DC source terms gives "Effective Loop Voltage"

$$V_{e\!f\!f} = V_{Inj} \frac{\psi_{Inj}}{\Phi_T} \leftarrow \text{Injector Flux}$$
Bias Voltage

Confinement scaling, helicity conservation should yield consistent Ip

PEGASUS is Mid-sized, Ultra-low A ST

Experimental Parameters Parameter Achieved Goals				
A	1.15-1.3	1.12-1.3		
R (m)	0.2-0.45	0.2-0.45		
$I_p(MA)$	≤ 0.18	≤ 0.30		
I_N (MA/m-T)	6-12	6-20		
RB_{t} (T-m)	≤ 0.06	≤ 0.1		
κ	1.4–3.7	1.4–3.7		
$\tau_{\rm shot}(s)$	≤ 0.02	≤ 0.05		
$\beta_{t}(\%)$	≤ 25	> 40		
$P_{\rm HHFW}(MW)$	0.2	1.0		

Current Injectors⁴ Inserted Above Lower Divertor, Biased Relative Vessel

- Gen1: 10 ms, 1-2 kA arc in gun
- Bias extracts e-, plasma into vessel along field lines

Gun Plasmas Exhibit 3 Distinct Phases: Relaxation to ST Observed at Low B

- 1. At low I_{ini}, high pitch angle & B_V, helical current filaments form
- 2. Filaments merge into cylindrical sheet as I_{lni} increased, B_V decreased
- 3. At low fields ($B_T \approx 0.01 \text{ T}$, $B_V \approx 0.005 \text{ T}$), relaxation to ST-like plasma

Relaxed Plasmas Exhibit Central Flux Reversal, Increased Current Drive & τ_{decay}

- Flux-reversed plasma observed during low field injection
 - > 4x flux reversal
 - Indicates separatrix formation
- I_{ϕ} increase > 50 %
 - Increased current drive efficiency
 - Max observed $I_{\phi} \approx 50 \text{ kA}$
- τ_{Decay} increase > 400 %
 - Decay w/o reversal $\approx 160 \ \mu s$ w/ reversal $> 700 \ \mu s$
 - Significant change in L/R

Relaxed Plasmas Exhibit Core Heating

- O-V (114 eV) to O-IV (77eV) line ratio indicates increasing T_e
- SXR array indicates formation of hot core
 - SXR emission increases throughout shot
 - Emission peaks at midplane
 - Midplane signals decay more slowly than edge at shut-off

n=1 MHD Activity Observed During Current Drive

- CHI & Spheromaks: n =1 activity associated w/ current drive^{5,6}
- Line tied kink provides axisymmetric V_{loop}⁷

 Mode strong during current ramp, attenuates at flattop

^[5] Redd et al., Phys. Plasmas, 9, 2006 (2002)

^[6] Brennan et.al, Phys. Plasmas, **6**, 4248 (1999)

^[7] X.Z Tang and A.H Boozer, Phys. Plasmas, 11, 2679 (2004)

Equilibria Reliably Reconstructed during Decay Phase

Gun

- B_v consistent with radial force balance
- During current injection phase:
 - Vertically asymmetric
 - Significant difficulties in reconstruction
 - large open field-line currents
 - non-axisymmetric currents near gun
 - possible field line stochasticity⁸
- After injector shut-off:
 - Vertically symmetric
 - Axisymmetric currents

48.1	$I_{p}(kA)$	47.4
0.21	· I _i	0.19
8.2	$\mathbf{q_{99}}$	9.9
0.36	$R_{axis}(m)$	0.31

Current Drive Consistent with Helicity Conservation within Factor of 2

- Use magnetic reconstruction of fiducial 50 kA shot #32606
- Effective loop volts: V_{eff} = 0.7 V
 - $_{-}$ 0-D Confinement Scaling (ITER98PBY2): $V_{eff},\,I_{p}$ consistent with $<\!T_{e}\!>\,\approx55$ eV
 - _ Assumptions: parabolic profiles, 50% radiated power, $Z_{eff} = 2$
 - <T_e> reasonable given increased O-V/O-IV, no burnout

Helicity Injection Rate	Helicity Dissipation Rate
$2V_{Inj}A_{Inj}B_n$	$4\pi I_p \eta_s R_0 B_0$
1.8 x 10 ⁻² Wb ² s ⁻¹	1.0 x 10 ⁻² Wb ² s ⁻¹

Better plasma characterization required for more accurate comparison

Manipulation of j(r) by Plasma Guns Allows Access to High $I_p/I_{TF_i}I_N$

- Ohmic ops:
 - $I_p/I_{TF} = 1 (I_N \approx 6)$ "soft-limit"
 - 2/1 tearing mode limiting
 - _ Minimal shear stabilization
- Gun plasmas: $I_p/I_{TF} \sim 2 (I_N \approx 12)$
 - No limiting MHD
- Stability possibly due to edge j
 - Hollow j(r)
 - Negative core shear

Note: Reconstruction constrained by external magnetics only

Plasma Guns Expand PEGASUS Operating Space

- Present system: Significantly expands access to high I_p/I_{TF} @ low I_p
- Future Plans: Upgrade gun array to access high I_p/I_{TF}, high I_p

Local Current Sources Provide DC Helicity for Startup of Tokamak Plasmas

- Non-inductive formation of ST demonstrated using plasma guns
 - I_p ≤ 50 kA driven by I_{Inj} ≤ 4 kA
 - $B_T \approx .01 T$
- Evidence of closed flux plasma formation:
 - Central flux reversal \Rightarrow Formation of separatrix
 - τ_{Plasma} decoupled from $\tau_{\text{Gun}} \Rightarrow \text{Persistent I}_{\text{p}}$ after shutoff
 - Increased heating, formation of core ⇒ better confinement
 - Strong n=1 mode correlated with current drive
 - Consistent with tokamak radial force balance
- Current drive consistent with helicity conservation within factor of 2
 - More detailed measurements needed
- Guns allow strong manipulation of j(r)
 - Significantly expands PEGASUS access to high I_p/I_{TF} ($I_p/I_{TF} > 2$, $I_N > 12$)

Future Goal: 0.1-0.2 MA Non-Solenoidal Startup

- Larger gun array for access to high I_p
 - Divertor Array:
 - Implement local bias coil
 - Develop midplane gun system
 - Extrapolatable to fusion class devices
 - *Compatible w/ PF field induction*

- 2. $lp \le 50 kA$: Optimize prototype divertor gun pair
 - Install dedicated gun bias anode plate
 - · Protect vessel, maintain impedance
 - Improve plasma characterization & expand operating space

- 3. Demonstrate handoff of non-inductive gun plasma to alternate current drive
 - Ohmic or RF

Outline

- 1. Conditions for non-inductive startup
- 2. Overview of PEGASUS experiment
- 3. Evidence for relaxation of gun plasmas into ST
- 4. Gun current drive roughly consistent with helicity conservation
- 5. Gun j(r) manipulation allows access to $I_p/I_{TF} > 2$ ($I_N > 12$) discharges
 - Significantly expands PEGASUS operating space

PEGASUS Studies ST Physics Limits as A →1

- Stability and confinement at high I_p/I_{TF} and high I_p
 - Extension of tokamak studies
- Limits on β_t and I_p/I_{TF} (kink) as $A\rightarrow 1$ (A=R/a)
 - Overlap between tokamaks and spheromaks

Both aided by non-inductive startup

Washer Gun Current Sources Provide Localized DC Helicity Injection

- Creation & maintenance of tokamak plasma by discrete electrodes demonstrated on CDX, CCT³
- Advantages of washer guns as DC helicity injectors for PEGASUS
 - Low impurity content compared to conventional emissive electrodes
 - _ Impurity ions trapped in gun aperture
 - Easy to integrate w/ Pegasus hardware
 - Scalable
- Disadvantages
 - Small aperture per gun limits helicity injection rate
 - Independent control of multiple guns adds complexity

Independent Measurements Indicate Formation of Relaxed, Closed Flux-surface Plasmas

- Increased current drive
- Reversal of poloidal flux at center column
- Increased plasma L/R decay time
- Core heating observed in VUV and SXR
- Appearance of n=1 MHD mode
- B_V consistent with tokamak radial force balance

