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Abstract
Investigating the Role of High-Frequency Magnetic Activity

in Local Helicity Injection Dynamics
N.J. Richner, M.W. Bongard, R.J. Fonck, J.A. Reusch, and C.E. Schaefer

Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706

Local Helicity Injection (LHI) uses biased plasma arc sources at the plasma edge for non-solenoidal tokamak startup.
Understanding the magnetic activity present in LHI and its scaling could prove crucial for applying this technique to future
devices. Internal magnetic measurements on the Pegasus ST show three main features are present in LHI: a ~20–40 kHz
peak from n = 1 line-tied kink motion of the injector current streams; an intermediate region near 0.6 MHz with higher
fluctuation power; and broadband turbulence for f < 3 MHz A novel LHI regime is found at low BT ≤ 0.075 T where the n
= 1 activity is suppressed, power at frequencies f > 0.1 MHz increases, and current drive efficiency is improved.
This suggests that high-frequency activity could play a critical role in the current drive process. To investigate this,
experiments to characterize and identify the observed activity are underway. Discharges with only the LHI current streams
isolate the ~ 0.6 MHz feature to the injector arc and show sensitivities to injector voltage and/or current and magnetic field
strength, suggestive of arc and/or kinetic instabilities. Experiments to determine the characteristic length and time scales of
the broadband turbulence are underway.

Work supported by US DOE grant DE-FG02-96ER54375.



LHI$is$a$Promising$Technique$for$
Non6Inductive$Tokamak$Startup
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Local&Helicity&Injection&Is&Routinely&Used&for&
Non7Solenoidal&Startup&on&PEGASUS

HFS$Injectors

LFS$Injectors

• Edge&current&extracted&from&injectors
• Relaxation&to&tokamak7like&state&via&

helicity7conserving&instabilities
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Understanding+Magnetic+Fluctuation+Activity+
During+LHI+Is+Critical+for+Scaling+to+Future+Devices

N.J.%Richner,%APS1DPP%2018

• Studies+of+the+magnetic+activity+present+during+LHI+is+motivated+by:

• Current+drive
– What physical mechanism(s) drive current in LHI dynamics?
– How does the current drive relate to the observed magnetic fluctuations?
– Can better understanding of the mechanism(s) be leveraged to improve the efficiency of LHI 

current drive?
– How would the current drive scale to next-step devices?

• Stability
– Are there any instabilities that could be potential show-stoppers for scaling LHI to high field 

and/or current?
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Theory'and'Experiment'Indicate'Importance
of'Magnetic'Fluctuation'Activity'during'LHI

N.J.%Richner,%APS1DPP%2018

• NIMROD'simulations'suggests'large'
scale'reconnection'events'associated'
with'lowCfrequency'! = 1 activity'as'a'
current'drive'mechanism

• ReconnectionCdriven'$%(') correlated'
with'continuous,'high'frequency'activity'
(>'200'kHz)

• An'operational'regime'has'been'found'
with'sustained'current'drive'and'greatly'
reduced'low'frequency'activity

M.G. Burke et al., Nucl. Fusion 57 076010 (2017) 

Reconnection%ion%heating%correlated%
with%high1f%MHD%fluctuations
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Insertable*Magnetic*Probes*Deployed*to*Study*Magnetic*Activity

N.J.%Richner,%APS1DPP%2018

• MRA*– "̇#(%) array
– 15 channels, '% ~ 1 cm
– Calibrated transfer function to ~ 6 MHz

• MRS*– Hall*sensor*array
– 3D ,(%) at 8 channels, '% = 1.5 cm
– 7 additional "# % at intermediate %

• Position*adjustable*along*PEGASUS midplane
– % = 54 – 100 cm, 3 ~ 0 cm

– Common, remotely translatable mechanical assembly
– Carbon armor

13.5*mm
5.8*mm5.8*mm

5.0*mm

"4
"#

"5 7.5*mm7.5*mm

MRS%Sensor%Layout

MRA%Coil%Layout

N.J. Richner et al., Rev. Sci. Instr. 89 10J103 (2018) 



Three%Main%Magnetic%Signatures%
are%Observed%During%LHI
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NIMROD'Describes'Current'Drive'Characterized'
by'Bursts'of'Low'Frequency,'! = 1 Activity

N.J.&Richner,&APS2DPP&2018

1.'Streams'follow'
field'lines

2.'Adjacent'passes'
attract

3.'Reconnection'
pinches'off'
current'rings

• Reconnection'of'current'streams'leads'to'$% growth
– Discrete reconnection events pinch off current rings

– Rings move inward, building up poloidal flux
– NIMROD indicates this happens throughout discharge, 

building plasma current

– Process associated with bursting ! = 1 activity

O’Bryan et al., Phys. Plasmas 19 080701 (2012)
O’Bryan and Sovinec, Plasma Phys. Control. Fusion 56 064005 (2014)

NIMROD 
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! = 1Mode%Consistent%with%Line.Tied%Kinking%of%Current%Stream

N.J.%Richner,%APS1DPP%2018

• Seen%in%frequency%range%of%%%%%%
~10%– 100%kHz

• ! = 1 as%characterized%on%LFS%
Mirnov%arrays

• Line.tied%kink%structure
– Toroidally asymmetric with node at 

injector $
– Alfvénic frequency scaling

– Power concentrated at injector %

Barr, UW PhD Thesis (2016)

Frequency%of%n%=%1%scales%with%VA

~ VA

Fluctuation%amplitude%has%node%at%injector%$
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Operational+Regime+Found+in+High+Field+Side+LHI+with
Sustained+Current+Drive+in+Absence+of+! = 1 Mode

N.J.&Richner,&APS2DPP&2018

• Reduced+MHD+regime+characterized+by:
– Rapid reduction (≳ 10×) in magnetic activity as 

measured on LFS Mirnov arrays

– Strong reduction / absence of ! = 1 mode

– Increased '( and improved current drive efficiency

– Have ~2× increase in plasma density

– Mechanism for reduction unclear, under 
investigation [Schaefer TP11.00113]

• Sustained+current+drive+in+absence+of+
! = 1 implies+additional+drive+
mechanism(s)+are+active+in+LHI

'( Sustained&for&~18&ms in&Absence&of&! = 1 Mode

Reusch et al., Phys. Plasmas 25, 056101 (2018)
Perry et al., Nuc. Fusion 58, 096002 (2018)
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Indications*of*Shift*to*Short/Wavelength*Activity*
in*Reduced*MHD*State

N.J.&Richner,&APS2DPP&2018

Total&power&in&1&– 40&kHz&window&is&
decreased&in&low&MHD&state

Total&power&in&400&– 720&kHz&window&
increased&at&low&R

• Low*frequency*activity*persists*with*sharp*
gradient*at*plasma*edge

• Note:*points*at*! ≲ 68 cm*indicate*edge*
moving*inward*from*probe*perturbations
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Ubiquitous)Spectral)Feature)at)~600)kHz)Observed)During)LHI

N.J.&Richner,&APS2DPP&2018

Feature&comprised&of&many,&discrete&
peaks,&rather&than&single&broad&featureFeature&observed&in&both&LFS&and&HFS&Injection
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Feature'has'been'Isolated'to'Injector'Arc'and/or'Current'Streams

N.J.&Richner,&APS2DPP&2018

• Observed'during'arcs;only'(no'applied'bias),'at'≲ 1/100th amplitude
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Similar'Fluctuations'also'Observed'on'
Injector'Voltage'Measurements

N.J.&Richner,&APS2DPP&2018

Feature&at&~560&kHz&on&!"#$,&!%&',&and& () Cross2correlation&analysis&shows&injector&signature&
appears&on&probe&with&14&μs delay&(~&*||/!- )

-1.0
-0.5
0.0
0.5
1.0

ρ V
in

j x
 V

in
j

-20 0 20
Time Delay [µs]

-1.0
-0.5
0.0
0.5
1.0

ρ V
in

j x
 V

ar
c

-0.4
-0.2
0.0
0.2
0.4

ρ V
in

j x
 B

-ti
ld

e

Vinj,D12

Varc,D12

Ḃ Probe
R = 82.1 cm

101980
t = 20 - 26 ms
f = 400 - 700 kHz
nbins = 120

10-17
 

10-15
 

10-13
 

10-11
 

Au
to

po
w

er
[(T

)^
2/

H
z]

1.00.80.60.40.20.0
Frequency [MHz]

10-4
10-3
10-2
10-1
100

Au
to

po
w

er
[(V

)^
2/

H
z]

10-8
10-7
10-6
10-5
10-4

Au
to

po
w

er
[(V

)^
2/

H
z]

101980

Ḃ Probe
R = 82.1 cm

Vinj

Varc

t = 20 - 26 ms
∆f = 2 kHz



17

Experimental,Observations,Suggest,

Feature,is,an,Arc,and/or,Beam,Instability

N.J.&Richner,&APS2DPP&2018

• Isolated,to,injector,arc,and/or,stream

• Frequency,scales,with,!"#$ and/or,%"#$,,and,&

• Possibilities,under,consideration:

– Arc Instability
• Instability,in,arc,that,is,propagated,along,current,

stream,with,the,application,of,injector,bias

• '()*+ ! Impedance,! ,%-.)/! 0&
• 1×3 instability?,Parasitic,instability?

– Beam Instability

• Could,expect,scaling,with,!"#$:,4-.)/~
6789:
/;

• TwoHstream,instability?,Filamentation,instability?

Frequency&increases&weakly&with&B&at&fixed&Vinj,&Iinj

Centroid&frequency&vs&Vinj at&%<= = 115&kA&
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Broadband(Continuum(Observed(During(LHI(
with(Varying(Power(Laws

N.J.&Richner,&APS2DPP&2018

• Broadband(power(observed(to(noise(floor(of(insertable(magnetics(probe

• Appears(to(follow(different(power(laws(for(different(frequency(regimes
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Different(Frequency(Bands(Exhibit(Different(Propagation(Behavior

N.J.&Richner,&APS2DPP&2018
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• Cross<phase(calculated(between(middle(channel(with(respect(to(others(in(radial(Ḃ array(
– Low frequencies: phase lag for sensors at higher !! "#$,& radially outward

– High frequencies: phase lead for sensors at higher !!"#$,& radially inward

• Initial(analysis(suggests(dependencies(on(',(spatial(location,(and(reduced(vs(high(MHD(state

Phase Mixing ?
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Continuum(has(Coherence(Lengths(of(!"~1(cm,(!# ~10(cm(

N.J.&Richner,&APS2DPP&2018

• Radial(coherence(lengths(of(~(0.5(; 2(cm

• Toroidal(coherence(lengths(of(~(10(; 30(cm,(
using(near;edge(Mirnov(array

• For(comparison:

$%~0.7 cm
,-.
/ ~25 cm ,-2

/ ~0.4 cm

• Flexibility(of(DTACQ(ACQ132(digitizer(enables(
faster(digitization(at(reduced(channel(count:

– 16 ch at 2 MSPS ! 4 ch at 8 MSPS, per probe

– For radial array probe, ! ~ 3 cm 

– For toroidal array probe, ! ~ 12 cm

• Fit(with(Gaussian(profile

Coherence&vs&R&using&Radial&Ḃ Array&Probe

Coherence&vs&Arc&Length&using&Near2Edge&Toroidal&Ḃ Array
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Investigating*Reconnection*&*Turbulence*as
Source*of*Continuum*Feature

N.J.&Richner,&APS2DPP&2018

• Measurements*of*reconnection*turbulence*in*
astrophysics*show*power*law*behavior:

– !" ∝ $%&/( for $ < $*+
– !" ∝ $%,/( or !" ∝ $%-/( for $ > $*+
– Additional break(s) at higher frequencies with steeper slope(s) 

have also been observed

• Observed*spectra*during*LHI*appear*to*follow*similar*
power*laws,*with*frequency*break*at*$ ≈ $*+

– -5/3 ! MHD turbulence ?

– -8/3 ! KAW turbulence ?

• Preliminary*analysis*also*suggests*dependencies*on*
field*strength*and*spatial*position

C.C. Chaston et al., PRL 100, 175003 (2008)
J.P. Eastwood et al., PRL 102, 035001 (2009)
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Summary'of'Magnetic'Activity'Observed'During'LHI

1. Peak'at'~10 − 100 kHz
– % = 1 characteristic
– Consistent with line-tied kinking of injected current

– ≳ 10× decrease in amplitude in reduced MHD state

2. Spectral'feature'at'~ 600 kHz
– Associated with injector arcs and/or injected streams
– Consists of many discrete peaks

– Frequency scales with injector power and field

3. Broadband,'turbulentFlike'continuum
– Power laws similar to those observed in reconnection turbulence

– Different propagation behavior for different frequency bands
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Open%Questions

N.J.&Richner,&APS2DPP&2018

• What%is%the%cause%of%the%MHD%transition%and%can%it%be%leveraged?
– Most high performance HFS LHI shots are in reduced MHD state
– Understanding the physical mechanism could enable utilizing this feature at higher !"#, $%

• What%role,%if%any,%does%the%600%kHz%feature%play%in%LHI?
– Evidence consistent with an instability in the plasma arc and/or a beam instability in the current stream

• Is%the%broadband%continuum%integral%to%LHI%current%drive%and/or%a%byproduct%of%it?
– Is the continuum/turbulent power responsible for current drive?

– Investigating short wavelength reconnection and turbulent/dynamo current drive as potential mechanisms

– How does the continuum in LHI compare to Ohmic-driven plasmas?
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Future&Work

N.J.&Richner,&APS2DPP&2018

• Experiments&to&test&if&600&kHz&feature&is&critical&to&current&drive&in&LHI
– Can the 600 kHz feature be stabilized? (anode fueling?)
– If so, can current still be driven in absence of this feature?

• Determine&how&the&magnetic&activity&scales&as&the&LHI&drive&is&increased

• Long&term:&test&other&known&current&drive&mechanisms,&ie.& !" × $% ,& ̃' × $%
– Development of Mach probe and/or CHERS system ( !")
– Development of a Rogowski coil probe ( ̃')
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Reprints
Reprints+of+this+and+other+PEGASUS presentations+

are+available+online+at
http://pegasus.ep.wisc.edu/Technical_Reports


