Instrumentation Development for a Novel Local Electric and Magnetic Field Fluctuation Diagnostic

Mindy Bakken

On behalf of:

R.J. Fonck, M.G. Burke, B.T. Lewicki, A.T. Rhodes, G.R. Winz

58th Annual Meeting of the APS Division of Plasma Physics Oct. 31st – Nov. 4th, 2016 San Jose, California

Introduction

Electric and Magnetic Field Fluctuations are Underdiagnosed in Tokamaks

- \tilde{E} measurements are integral to turbulent plasma physics because they provide information regarding:
 - $\tilde{E}_z \times \overrightarrow{B_\phi} = \tilde{v}_r$: cross-field transport
 - $\tilde{E}_r \times \overrightarrow{B_\phi} = \tilde{v}_\theta$: zonal flows, transport barrier
- Required for validation of tokamak core turbulence and transport models
- \tilde{E} can be extracted from fluctuations in the Stark manifold

Local $ilde{E}$ Results in Fluctuations in the Stark Manifold

The measured field is:

$$\boldsymbol{E}_{\text{tot}} = \boldsymbol{E}_{\text{plasma}} + \boldsymbol{v}_{\text{beam}} \times \boldsymbol{B}$$

- For 80 keV beam, $B_T = 0.3T$
- $E_{v \times B} \approx 1 \text{ MV/m}$

Two measurement methods:

- $\tilde{E}_z \propto \widetilde{\Delta \lambda}_{\pi}$: measurement of separation of π lines
- $\alpha \tilde{E}_r \propto \frac{\pi}{\sigma}$: line intensity ratio

1 H. A. Bethe & E. E. Salpeter. <u>Quantum Mechanics of One- and Two-Electron Atoms</u>. New York: Dover Publications, Inc., 1957. 2 H. Y-H. Yuh, PhD Thesis, MIT (1995).

\tilde{E} and \tilde{B} Measurement Validation Requires a High Performance DNB

- Diagnostic neutral beam requirements:
 - Low divergence, Low $T_{i\perp}$: limit peak broadening
 - High beam fraction at full energy
 - 80 kV: High energy for spectral splitting
- Low ripple beam power supply
 - A novel three-phase resonant power supply
 - Well defined frequency components
- A novel high-speed, high-throughput spectrometer measures local \tilde{E} up to 250 kHz
 - $U \cong 0.1 \text{ cm}^2\text{-ster}$
 - Spectral resolution $\cong 0.25 \text{ Å}$
 - See poster by M.G. Burke

Diagnostic Beam

High Performance Beam Eases Field Fluctuation Measurements

- Beam produced by Culham for PPPL meets beam requirements
- Initial deployment will be on Pegasus

Diagnostic Requires High Energy, Low Divergence Beam

Using DNB on loan from PPPL

- H⁰
- Extracted Ion Current: 2-3 A
- Full-energy *J* at focus: 3-6 mA/cm²
- Diameter ~ 9cm
- Pulse Length ~ 100ms

Favorable features

- Low divergence: $\leq 0.47^{\circ}$
 - Mitigates divergence line broadening
- High $E_b \sim 60 80 \text{ keV}$
 - · Maximizes MSE broadening
- 90-95% ionization at full beam energy
 - New plasma arc source
 - Optimize signal at full energy component

DNB Significantly Refurbished

- New Active Arc Source
 - High full energy species fraction
- Vacuum System
 - All new seals and pump
- New Power Systems
 - Low ripple, 80kV power supply
 - Arc source power supply
- New Control Systems
 - NI FPGA and DAQ controlled with LabView

80 kV Grid Supply

Bending Magnet

High Voltage Diagnostic Rack Commissioned

- Arc power supply
 - Pulse Forming Network (PFN)
- Sparker circuit
 - Tungsten electrode initiates breakdown at 2.5 kV
- Guide Field Power supply
- Gas valve power supplies
- HV diagnostics
 - Applied arc voltage and current
 - Langmuir probe measurements
- 200 kV Isolation transformer
- High voltage tests successful
 - 100 kV standoff

Novel Power Supply

80kV / 400kW Resonant Converter Implemented with IGBT Switches

- 35 kHz Base Switching Frequency
- 3 single phase transformers
- Fast Rise/Fall time (< 200usec)
- Low filter energy (1J)
- Low voltage ripple (±0.00025%)
- Low energy per cycle (2J)
- Low primary stored energy (120kJ)
- Gain is load dependent
- Excellent fault behavior
- FPGA Control
 - 40 MHz Base Frequency
 - Digital Control

3-phase resonant bridge & stored energy

Low Ripple, 80keV High Voltage Power Supply Designed and Fabricated

- New power system required for diagnostic development
- High energy, flat voltage power supply
- Resonant converter topology for low voltage ripple

Simulated Performance with PLECS

> 20x gain achievable in HV Section

Resonant Converter High Voltage Section

- 80kV at 5A with 1J of 80kV filter energy
- Transformer leakage inductance (La/Lb/Lc) utilized for resonant circuit
- Very fast ramp times < 200us to 80kV and no crowbar
- Very low ripple ± 0.2 V or ± 0.00025 %

M. R. Bakken, APS-DPP 2016

Zero Voltage/Zero Current Switching Provides Minimal System Losses

What is ZVC/ZCS

- Passive commutation
- IGBT turn-off losses are zero
- Diode commutation at zero voltage (with snubber)
- Lower system losses allows higher frequency operation
- Higher frequency allows for higher power density (lower energy per cycle)
- What's not to like?
 - Lowest loss only at resonance
 - Turn-On losses can still be significant
 - Impedance imbalances cause trouble
 - Control difficult because of dynamic gain

Multi-pole Bridge Snubber Minimizes Switching Losses

- Clamps device for ~ 400nsec
- Allows turn-on of IGBT at zero voltage
- Loss reduction enables access to higher switching frequencies

Source Plasma Characterization

New High Density Arc Plasma Deployed to Provide Optimal Species Mix

- Hot filament source replaced with washer stack arc source
 - Provides high ionization fraction (80-90%)¹⁻³

 Plasma expands into a bucket with multipole cusp fields

Accelerator

Bucket

² Abdrashitov, et al, Rev. Sci. Instrum. **72**, 594 (2001)

³ Korepanov, et al, Rev. Sci. Instrum. 75, 1829 (2004)

Shot Parameters for Typical Arc Discharge

Arc Discharge

- Breakdown initiated by 2.5 kV sparker
- PFN discharges into the arc
- ~10 ms pulse length
 - Potential to extend with new power supply

Shot Parameters:

- 80 V of arc voltage
- ~800 A arc current
- Plasma light intensity mimics arc current

Ion Source Needs to Match Grid Perveance Requirements

- Beam Extraction Requirements
 - Extracted Current at 80kV: 2.5 A
 - Grid Extraction area: 19 x 1.52 cm²

$$\rightarrow j_{\rm ext} \approx 87 \text{ mA/cm}^2$$

- Near the grids: $j_{\text{plasma}} = n_e e v_B \rightarrow j_{\text{ext}} = I_{\text{ext}} / A_{\text{ext}}$
 - Where $v_B = \sqrt{T_e / m_i}$
- Source Requirements to meet j_{ext} at the grids:
 - $T_e \gtrsim 4 \text{ eV}$
 - $n_e \sim 2 \times 10^{17} \text{ m}^{-3}$

Desired Operational Space Achieved

 A retractable and rotatable probe was designed for complete characterization of source plasma

Arc Performance Optimization

Stable Arc Discharge Required

- $\widetilde{n_e}$ at the extraction plane may impact beam divergence
- Demonstrated ability to vary density
 - Match beam perveance
- Recent work has improved arc discharge stability
 - Additional hydrogen fueling at anode
 - Magnetic guide field strength

Cathode Gas Flow Rate Varies Plasma Source Parameters

Decreased cathode fueling increases plasma density while maintaining T_e

M. R. Bakken, APS-DPP 2016

Anode Fueling Integral to Arc Stability

Voltage fluctuations in the arc reduced through gas feedthrough at the anode

Arc Stability Modified by Strong Guide Field

High guide field induces arc instability

Validation of Electric Field Fluctuation Diagnostic Enabled by Optimized DNB

- A low-divergence, high energy diagnostic neutral beam (from PPPL) completely rebuilt
- New washer-stabilized plasma arc source gives required n_e at T_e~7 eV
- Source plasma stabilized by anode fueling
- A novel three phase resonant converter power supply has been designed and built for low ripple, constant voltage output
- Commissioning of HV PS to be followed by initial DNB operation

This research is supported by DOE Grant Number DE-FG02-89ER53296

Future Works

- Arc power and diagnostics rack tested successfully to 100kV
- High Voltage Power Supply testing in progress
 - Initial tests have achieved 36 kV
 - Test to 80 kV
 - Add filter network to reduce ripple
- Conditioning of accelerator grids to commence in short order
- Integration of new 80kV power supply after grid conditioning
- After conditioning, ion species mix and beam divergence measurements will determine arc discharge parameters

