Progress Towards A New Technique for Measuring Local Electric and Magnetic Field Fluctuations in High Temperature Plasmas

Galen Burke

APS DPP, Milwaukee October 26, 2017

Introduction

Understanding Turbulence in Tokamaks is a Fundamental Challenge for Fusion Energy

- Plasma turbulence in tokamaks results in anomalous transport
 - Cross-field transport >> neoclassical predictions
- Present plasma diagnostics measure key fluctuating parameters $\tilde{n},\,\tilde{T}_i,\,\tilde{T}_e,\,\tilde{v}$
- Measurement of electrostatic field turbulence $(\tilde{E} \sim k_{\perp} \tilde{\phi})$ remains a challenge, gives \tilde{v}
 - $\tilde{E}_{\theta} \times B_{\phi} \cong \tilde{v}_r$: turbulent cross-field transport, $\tilde{E}_r \times B_{\phi} \cong \tilde{v}_{\theta}$: shear-flow and zonal flow dynamics
- Local magnetic field fluctuation (\tilde{B}) measurement also challenging, could provide critical information
 - Local \tilde{B} dynamics during edge harmonic oscillation (EHO)
 - 3D magnetic field perturbation penetration into plasma pedestal

Density perturbations and calculated velocimetry in DIII-D plasma

Motional Stark Effect Field Used as Carrier Signal for \vec{E}

Motional Stark Effect spectrum provides carrier line broadening for \tilde{E} :

$$\vec{E}_{total} = \vec{v}_b \times \vec{B} + \vec{E}_{plasma}$$

- Measure high-speed variations in π /s line intensity ratio or in π components linewidth to derive \tilde{E}
- Spatial Heterodyne Spectrometer (SHS) provides flexible analyzer of multiplet spectrum
- New CMOS imaging systems provide detection and DAQ

Model Hα Stark Spectrum: 80 keV, 0.5 T

Multiple Techniques Used to Extract Components of $\vec{E}_{plasma}(t)$

- Midplane beam, sightline: linewidth changes
 - Radial beam: $\vec{E}_{MSE}\hat{z}$, \tilde{E}_z doesn't change α
 - $\widetilde{\Delta \lambda}_{Stark} \propto \widetilde{E}_z \rightarrow \widetilde{v}_r$
- Midplane beam, off-midplane sightline: Intensity ratio change

•
$$R = \frac{\sum I_{\pi}}{\sum I_{\sigma}} = \frac{\sin^2 \alpha}{1 + \cos^2 \alpha} {I_{\pi}/I_{\sigma} \choose I_{\sigma}} (n_e) \equiv \frac{\sin^2 \alpha}{1 + \cos^2 \alpha} F$$

•
$$\tilde{R} = R \left[\frac{\partial \ln F}{\partial \ln n_e} \frac{\tilde{n}_e}{n_e} + \frac{4 \cos \alpha}{(1 + \cos^2 \alpha) \sin \alpha} \tilde{\alpha} \right]$$

•
$$\tilde{E}_r \sim \tilde{\alpha} E_{MSE} \rightarrow \tilde{v}_z$$

 First emphasis on line width measurement: insensitive to density fluctuations, midplane view

Local Magnetic Field Fluctuations May be Measurable via Stark Muliplet

- Measurement of local magnetic field fluctuations (\tilde{B}) in high temperature plasmas is challenging
 - Provides information on: fast particle modes, island structures, plasma response to 3D RMP for ELM control, high- β turbulence
- · Again use MSE field as carrier
- For midplane sightline and radial beam:
 - $\vec{v}_r \times \tilde{B}_{\phi} = \tilde{E}_z$, \vec{E}_{MSE} is mostly in the \hat{z} direction $\rightarrow \widetilde{\Delta \lambda}_{Stark} \propto \tilde{B}_{\phi}$
 - $\vec{v}_r \times \tilde{B}_z = \tilde{E}_r$, changes angle of $\vec{E}_{MSE} \rightarrow$ measure polarization intensity
- Typically for tokamaks $\tilde{B}/B \sim 10^{-5}$, 100x smaller than broadband \tilde{E}/E
- However for EHO, $\tilde{B}/B \sim 10^{-4}$, coherent, low frequency (~10 kHz)
- \tilde{B}/B and \tilde{E}/E may be distinguishable using different beam energy components

• $\Delta \lambda_1 \propto v_b \tilde{B} + \tilde{E}_{int}, \Delta \lambda_2 \propto \frac{1}{2} v_b \tilde{B} + \tilde{E}_{int}$

Diagnostic Requirements

$\tilde{E}/\tilde{E}_{MSE}$ in Fusion Grade Plasmas is ~10⁻³

Experiment	T _{e,0} (keV)	B (T)	a (m)	\widetilde{E}/E_{MSE}
NSTX-U	~2-4 (?)	1	0.6	$1 - 2 \times 10^{-3}$
DIII-D	2-5	2	0.7	$0.5 - 1 \times 10^{-3}$
Pegasus	~0.3	0.3	0.35	$0.7 - 1 \times 10^{-3}$

- Tokamak drift wave turbulence scaling gives $\tilde{E} \propto T_e/a$
- \tilde{E} turbulence broadband, majority of fluctuation power < 300 kHz
- \tilde{E} , \tilde{n} rise from core to edge
- \tilde{E}/E_{MSE} at or bellow photon noise floor for BES (typical rms noise ~0.1%)
 - Two independent but spatially correlated measurements (e.g. $\langle \tilde{E}\tilde{n} \rangle$) made simultaneously can suppress incoherent photon noise another ~10x

$\Delta \tilde{\lambda}_{\pi}$ Spectrometer Requirements are Formidable

Resolution:

- Need \sim 8 spectral bins to resolve 2 gaussian-like π components
- $\Delta \lambda_{H\alpha}^{\pi} \sim 6$ Å in D3D giving approximate spectral resolution of 0.75 Å, $R = \frac{\lambda}{\delta \lambda} \sim 9000$

Throughput:

- Matched to collection optics, U = 0.016 cm²sr per D3D BES spatial point
- 2 spatial points desired

Compatible detector system:

- ~500 kHz time response
- Mitigation of sightline-DNB geometric broadening

Spatial Heterodyne Spectroscopy Technique Utilized for $\Delta \tilde{\lambda}_{\pi}(t)$ Measurement

- Self scanned, 2 beam interferometer
- Input wavelengths heterodyned around Littrow wavelength
- Field widening prisms increase throughput >10x

Spatial Heterodyne Spectroscopy Achieves High Resolution and Throughput

Phase I SHS design points:

- $R = \sigma/\delta\sigma \approx 2Wd$, $U = 2\pi\eta A/R$
- For \tilde{E} : Need approximately R~9000
- Design studies of SHS indicate low groove density grating maximizes sensitivity to \tilde{E}/E_{MSE}
- Phase I parameters: grating width W = 75 mm and 50 g/mm, $R \sim 7500 \ @. \sim 0.05 \ cm^2 sr$
- Future design to utilize field widening prisms
 - Increases U \sim 100x at the same resolving power
 - Smaller SHS and multiple spatial points

Compact monolithic SHS design scales favorably to multiple plasma spatial points:

SHIMMER SHS: R≈2.5x10⁴, U≈0.1 cm²sr

Phase I Progress

Phase I Optical Layout

- Planned full system deployment to D3D for late 2017
- Goal is to validate spectrometer design with measurement of low frequency (~10 kHz) electric or magnetic field turbulence

Phase I deployed to D3D for Evaluation in Tokamak Environment

Initial Performance Characterization

- Single input wavelength leads to single spatial frequency
- Field lens corrects intensity vignetting and fringe distortion due to demagnification lens
- Hydrogen-Deuterium
 Giessler tube light source to
 be used for future resolution
 validation
 - Separation of H_{α} (656.279 nm) and D_{α} (656.1 nm) ~ 0.18 nm is close to the desired resolution for the measurement

Broadband spectral input leads to shrinking of interferogram

- Variable line width put into SHS using tunable light source
- Spectrally broad input effects inteferogram envelope

•
$$I(x) = e^{-wx^2} [1 + \cos(8\pi(\sigma - \sigma_L))x \tan \theta_L]$$

- Multiple broad lines has addition effect
- For fluctuation measurement, desire every pixel in detector to provide meaningful information
 - Design studies of spectrometer sensitivity push groove density down

Compensation Plate Needed to Maintain Fringe Contrast, Match Fiber Etendue

- Spectrometer designed to match single fiber etendue
 - $U_{BES} = 0.016 \text{ cm}^2 \text{sr}$
 - Full etendue SHS aperture size ~4.5 mm dia. imaged by 75mm dia. f/2 collimator
- Compensation plate required to maintain fringe contrast due to large aperture
- Plate installed in front of 50:50 beam splitter
 - Thickness equal to beam splitter plate, anti-reflection coated, $\lambda/4$ flatness

Fringe contrast with compensation plate:

D3D BES Lab vibration environment

- D3D BES lab elevated, thin walls, near HVAC equipment
- Active vibration isolation table nullifies table resonance and vibrations less than 20 Hz
- Further damping of horizontal vibrations may be necessary

SHS central fringe movement due to vibrations

Table sensors: vertical

Table sensors: horizontal

M.G. Burke, APS DPP 2017

Sharp cutoff D_{α} filter required to isolate full energy components

- Filter designed by Alluxa
 - 90-10% cutoff < 0.25 nm
 - >90% transmission in passband
 - 3 in diameter
- Allows for selection of only full energy beam components (improves sensitivity) or all components (distinguish between \tilde{B} and \tilde{E})
- Movement of passband over large filter area shallows cutoff
 - 0.4 nm 90-10% cutoff useable, misses design point
 - Working with manufacturer on fix

M.G. Burke, APS DPP 2017

First Light Into Phase I SHS

- First light into SHS using fiber channel next to BES fiber array
 - D3D run for two days in July
- Observed 150L beam modulation
- SHS noise level estimated to be ~0.5%
 - $\sim 4 \times 10^7$ photo-e⁻ in 2 ms $\rightarrow 2 \times 10^4$ photo-e⁻/ μ s
 - At 300 kHz BW, $\frac{d\tilde{N}}{dt} = \sqrt{2\frac{dN}{dt}BW}$ gives $d\tilde{N}/dt$ = 346 or ~0.5% rms noise
- RMS noise level likely to improve with filter and compensation plate fix

Geometric Broadening Compensation

Geometric Broadening Limits Diagnostic Sensitivity to $ilde{E}$

- λ shift due to beam-collection optic viewing geometry is linear across window
 - Shift of ~ 0.3 nm (~ 7.5 cm⁻¹) across window
- Can be removed numerically or physically in spectrometer
- Both removal techniques require collection optic be imaged to a place inside spectrometer

Sensitivity to \tilde{E}/E_{MSE} at different window sizes:

Collection Window Conjugate to Input Aperture Required to Remove Geometric Broadening

- 5 mm aperture size sets plasma collection volume (~2 cm)
- Fore optics image the plasma to the 5 mm aperture while imaging the BES collection lens to a ~10x10 coherent fiber bundle of approximately the same size as the current BES fiber bundles (~4.5 mm diameter) → reduce geometric broadening by ~10x

Geometric Broadening Compensation Achieved by Offsetting SHS Aperture

- Shift in real wavelength across BES collection lens can be negated by offsetting aperture (standard practice in atmospheric wind Fabry-Perot spectrometers see Trauger et al.)
- At spectrometer, window image rotated 90° so that $\Delta\sigma_{geo}$ is perpendicular to dispersion plane $(\Delta\sigma_{geo}(\alpha)$, where α is angle off dispersion plane)
- Grating equation off-axis has groove spacing
 (a) change proportional to α,
 σα cos α (sin θ_{in} + sin θ_{out}) = m
- Solving for wavenumber shift while keeping OPD phase constant:
 - $\delta(\Delta\sigma) = \frac{\Delta\sigma_0}{\cos^2(\theta_L)} \tan \alpha_0 \, \delta(\alpha)$
 - $\delta(\alpha)$ becomes the field of view of the spectrometer β

J. T. Trauger., Appl. Opt., 11, 1972.

Doppler compensation concept in SHS:

~5x5 coherent fiber bundle

Summary: Moving Towards Diagnostic For \tilde{E} and \tilde{B} in High Temperature Magnetically Confined Plasmas Using Spatial Heterodyne Spectroscopy

- \tilde{E} measurements appear feasible using high speed measurements of motional stark multiplet
 - Horizontal view gives \tilde{E}_z , off midplane gives \tilde{E}_R
 - \tilde{B} measurement also possible using Stark multiplet
- Phase I SHS design completed, near deployment for first fluctuation data
 - First light through phase I SHS allowed testing of integrated system in tokamak environment
 - Need for improved filter transmission, compensation plate → changes in progress
- Next steps:
 - Validate technique with low frequency ($\sim 10 \text{ kHz}$) \tilde{E} or \tilde{B} measurement at D3D
 - Design Phase 2 spectrometer with geometric broadening compensation, run single coherent fiber bundle to D3D BES diagnostic lab

Reprints

Reprints of this and other PEGASUS presentations are available online at

http://pegasus.ep.wisc.edu/Technical_Reports

