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Understanding Turbulence in Tokamaks is a Fundamental Challenge for 
Fusion Energy

• Plasma turbulence in tokamaks results in anomalous 
transport

• Cross-field transport >> neoclassical predictions

• Present plasma diagnostics measure key fluctuating 
parameters 12, 3"4, 3"5, 62

• Measurement of electrostatic field turbulence (!"~89:") 
remains a challenge, gives 62

• !";×#= ≅ 62?: turbulent cross-field transport, !"?×#= ≅ 62;: shear-flow 
and zonal flow dynamics

• Local magnetic field fluctuation (#" ) measurement also 
challenging, could provide critical information

• Local #" dynamics during edge harmonic oscillation (EHO)

• 3D magnetic field perturbation penetration into plasma pedestal

Density perturbations and calculated 
velocimetry in DIII-D plasma

GYRO turbulence simulation
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Motional Stark Effect Field Used as Carrier Signal for !"
• Motional Stark Effect spectrum 

provides carrier line broadening 
for !" :

!@A@&% = 6⃗D×# + !$%&'(&

• Measure high-speed variations in 
π/s line intensity ratio or in π-
components linewidth to derive !"

• Spatial Heterodyne Spectrometer 
(SHS) provides flexible analyzer 
of multiplet spectrum

• New CMOS imaging systems 
provide detection and DAQ
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Diagnostic layout:
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Multiple Techniques Used to Extract Components of !"$%&'(& )

• Midplane beam, sightline: linewidth changes

• Radial beam: !*+,K̂, !"M doesn’t change N

• ∆.G+@&?O ∝ !"M à 62?

• Midplane beam, off-midplane sightline: Intensity 
ratio change

• P = ∑ RS��
∑ RU��

= VWXYZ
[\]^VYZ

RS RU_ 15 ≡ VWXYZ
[\]^VYZ a

• P" = P b cX d
b cX ef

e2f
ef
+ g ]^V Z

[\]^VYZ VWX Z N2

• !"?~N2!*+, à 62M

• First emphasis on line width measurement: 
insensitive to density fluctuations, midplane view

Beam-sightline selection can optimize sensitivity to 
transport-relevant δE fluctuations 

3D modeling illustrates Lorentz field 
structure (black arrows) for a given 
beam energy (red arrow) and field 
(BTotal in blue arrows) 
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ẑ
!
Etot

!EZ
!ER

Neutral beam injection and viewing 
angle at midplane provide the best 
angle for measuring     via spectral line 
width 
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Similarly, beam injected from top of 
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Local Magnetic Field Fluctuations May be Measurable via Stark Muliplet

• Measurement of local magnetic field fluctuations (#" ) in high temperature plasmas is challenging

• Provides information on: fast particle modes, island structures, plasma response to 3D RMP for ELM control, high-i
turbulence

• Again use MSE field as carrier

• For midplane sightline and radial beam:

• 6⃗?×#"= = !"M, !*+, is mostly in the K̂ direction à ∆.G+@&?O ∝ #"=

• 6⃗?×#"M = !"?, changes angle of !*+, à measure polarization intensity

• Typically for tokamaks #"/# ~ 10-5, 100x smaller than broadband !"/!

• However for EHO, #"/#~ 10-4, coherent, low frequency (~10 kHz)

• #"/# and !"/! may be distinguishable using different beam energy components

• ∆.[ ∝ 6D#" + !"4e@, ∆.k ∝ [
k 6D#" + !"4e@
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Diagnostic Requirements



!" /!*+, in Fusion Grade Plasmas is ~10-3

Experiment Te,0 (keV) B	(T) a (m) lm/lnol
NSTX-U ~2-4	(?) 1 0.6 1 − 2×10tu
DIII-D 2-5 2 0.7 0.5 − 1×10tu
Pegasus ~0.3 0.3 0.35 0.7 − 1×10tu

• !" turbulence broadband, majority of fluctuation power < 
300 kHz

• !" , 12 rise from core to edge

• !"/!*+, at or bellow photon noise floor for BES (typical 
rms noise ~0.1%)

• Two independent but spatially correlated measurements (e.g. !"12 ) made 
simultaneously can suppress incoherent photon noise another ~10x

C. P. Ritz, et. al., Phys. Rev. Lett., 62, 1989.

Fluctuations in TEXT• Tokamak drift wave turbulence scaling gives !" ∝ 35 y⁄
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∆./0 Spectrometer Requirements are Formidable

• Compatible detector system:

• ~500 kHz time response

• Mitigation of sightline-DNB geometric broadening

• Spectrometer optics conjugate to plasma collection lens à coherent fiber bundle
M.G.	Burke,	APS	DPP	2017

• Resolution:
• Need ~8 spectral bins to resolve 2 gaussian-like {

components
• Δ.}Z0 ~ 6 Å in D3D giving approximate spectral 

resolution of 0.75 Å, R= ~
�~ ~9000

• Throughput:
• Matched to collection optics, U = 0.016 cm2sr per 

D3D BES spatial point
• 2 spatial points desired
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Spatial Heterodyne Spectroscopy Technique Utilized for ∆./0()) Measurement

Ç É = Ñ# Ö 1 + cos 2{ 4 Ö − Öä É tan éè êÖ
ë

ä

• Self scanned, 2 beam interferometer

• Input wavelengths heterodyned around Littrow 
wavelength

• Field widening prisms increase throughput >10x

éè

J. Harlander, R. J. Reynolds, and F. L. Roesler., ApJ, 396, 1992.M.G.	Burke,	APS	DPP	2017
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Spatial Heterodyne Spectroscopy Achieves High Resolution and Throughput

• Phase I SHS design points:

• P = Ö íÖ⁄ ≈ 2îê, ï = 2{ñó P⁄
• For !" : Need approximately R~9000

• Design studies of SHS indicate low groove 
density grating maximizes sensitivity to !"/!*+,

• Phase I parameters: grating width W = 75 mm 
and 50 g/mm, R~7500 @ ~0.05 cm2sr

• Future design to utilize field widening 
prisms 

• Increases U ~100x at the same resolving power

• Smaller SHS and multiple spatial points SHIMMER SHS: R≈2.5x104, U≈0.1 cm2sr

Compact monolithic SHS design scales 
favorably to multiple plasma spatial points:

M.G.	Burke,	APS	DPP	2017
Harlander, J. M., Roesler, F. L., Englert, C. R., et al. (2003). 
Applied Optics, 42(15), 2829–2834.
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Spectrometer design studies:



Phase I Progress
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Phase I Optical Layout

f/2 D3D BES 
collection lens

Spectrometer and detector:

Spatial 
Heterodyne 

Spectrometer

ÅZ Filter

Collimator

Fringe imaging system

High speed 
CMOS 
Detector

f/1 relay lens
0.3x Telecentric lens

Field lens

Wire grid polarizer

Fiber run to D3D BES room:

Plasma

Window~2 cm

At tokamak:

Incoherent fiber bundle Input	aperture

• Planned full system deployment to D3D for late 2017

• Goal is to validate spectrometer design with measurement of low 
frequency (~10 kHz) electric or magnetic field turbulence



Phase I deployed to D3D for Evaluation in Tokamak Environment
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0.3x Telecentric lens

Sharp cutoff 
ÅZ filter

f/0.95 
Demagnification 

lens

~500 kHz CMOS 
detector

6in diameter 
non-polarizing 
beam splitter

75x75 mm 50 lp/mm 
gratings

Field lens

3in f/2 
Achromat

Fiber from BES 
collection lens

Active vibration 
isolation table

Input 
aperture

Remote filter 
adjustment

D3D BES Diagnostic Lab



Initial Performance Characterization

• Single input wavelength 
leads to single spatial 
frequency

• Field lens corrects intensity 
vignetting and fringe 
distortion due to 
demagnification lens

• Hydrogen-Deuterium 
Giessler tube light source to 
be used for future resolution 
validation

• Separation of òZ (656.279 nm) 
and ÅZ (656.1 nm) ~ 0.18 nm is 
close to the desired resolution for 
the measurement

M.G.	Burke,	APS	DPP	2017
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Broadband spectral input leads to shrinking of interferogram

• Variable line width put into SHS 
using tunable light source

• Spectrally broad input effects 
inteferogram envelope

• Ç É = ôtöõY[1 + cos	(8{(Ö −
Öè))É tan éè]

• Multiple broad lines has addition effect

• For fluctuation measurement, 
desire every pixel in detector to 
provide meaningful information

• Design studies of spectrometer sensitivity 
push groove density down

M.G.	Burke,	APS	DPP	2017

SHS	model

SHS	lab	tests
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Compensation Plate Needed to Maintain Fringe Contrast, Match Fiber Etendue

• Spectrometer designed to match 
single fiber etendue

• ï†,+=0.016 cm2sr

• Full etendue SHS aperture size ~4.5 
mm dia. imaged by 75mm dia. f/2 
collimator

• Compensation plate required to 
maintain fringe contrast due to 
large aperture

• Plate installed in front of 50:50 
beam splitter

• Thickness equal to beam splitter plate, 
anti-reflection coated, ./4 flatness

M.G.	Burke,	APS	DPP	2017
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D3D BES Lab vibration environment

• D3D BES lab elevated, thin walls, 
near HVAC equipment

• Active vibration isolation table 
nullifies table resonance and 
vibrations less than 20 Hz 

• Further damping of horizontal 
vibrations may be necessary

M.G.	Burke,	APS	DPP	2017
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Sharp cutoff ÅZ filter required to isolate full energy components

• Filter designed by Alluxa

• 90-10% cutoff <0.25 nm

• >90% transmission in passband

• 3 in diameter

• Allows for selection of only full energy beam 
components (improves sensitivity) or all 
components (distinguish between #" and !")

• Movement of passband over large filter area 
shallows cutoff

• 0.4 nm 90-10% cutoff useable, misses design point

• Working with manufacturer on fix

M.G.	Burke,	APS	DPP	2017

6560 A654065206500
Wavelength [Å]

1.0

0.8

0.6

0.4

0.2

0.0

Fi
lte

r T
ra

ns
m

iss
io

n 
[%

]  Stark Π components
 Alluxa filter, 

   passband tuned down

100

80

60

40

20

0

In
te

ns
ity

 [a
.u

.]
657656655654653652651

Wavelength [nm]

two inch spot middle
90%-10%
Δλ red = 0.4 nm
Δλ blue = 0.35 nm

654.91 nm, 85.3

655.31 nm, 9.54



First Light Into Phase I SHS 

• First light into SHS using fiber channel 
next to BES fiber array

• D3D run for two days in July

• Observed 150L beam modulation

• SHS noise level estimated to be ~0.5%

• ~4×10° photo-e- in 2 ms à 2×10g photo-e- /¢h

• At 300 kHz BW, £§
m

£@ = 2 £§£@ #î
�

gives ê•m ê)⁄
= 346 or ~0.5% rms noise

• RMS noise level likely to improve with 
filter and compensation plate fix

M.G.	Burke,	APS	DPP	2017
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Geometric Broadening Compensation



Geometric Broadening Limits Diagnostic Sensitivity to !"
6D5&(

x̂éä
éõ

• . shift due to beam-collection optic viewing 
geometry is linear across window

• Shift of ~0.3 nm (~7.5 cm-1) across window

• Can be removed numerically or physically in 
spectrometer

• Both removal techniques require collection optic 
be imaged to a place inside spectrometer
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Window

Sensitivity	to	!"/!*+, at	different	window	sizes:



Collection Window Conjugate to Input Aperture Required to Remove 
Geometric Broadening

• 5 mm aperture size sets plasma collection volume (~2 cm)

• Fore optics image the plasma to the 5 mm aperture while imaging the BES collection 
lens to a ~10x10 coherent fiber bundle of approximately the same size as the current 
BES fiber bundles (~4.5 mm diameter) à reduce geometric broadening by ~10x

M.G.	Burke,	APS	DPP	2016

BES collection 
lens

CollimatorWire grid polarizer

Fiber run to D3D BES room:

Plasma

Window~2 cm

At tokamak:

10x10 fiber bundle 
(coherent)

5 mm aperture

Aperture offset 
angle N

SHS

Lens forms image of 
window on coherent bundle Δ.¶5A

SHS optical axis



• Shift in real wavelength across BES collection 
lens can be negated by offsetting aperture 
(standard practice in atmospheric wind Fabry-
Perot spectrometers see Trauger et al.)

• At spectrometer, window image rotated 90° so 
that ∆Ö¶5A is perpendicular to dispersion plane 

(∆Ö¶5A(N), where N is angle off dispersion 
plane)

• Grating equation off-axis has groove spacing 
(a) change proportional to N, 
Öy cos N sin é4e + sin éA©@ = ™

• Solving for wavenumber shift while keeping 
OPD phase constant: 

• í(∆Ö) = ∆ë´
¨A'Y ;≠

tanNä í(N)

• í(N) becomes the field of view of the spectrometer i

Geometric Broadening Compensation Achieved by Offsetting SHS Aperture

M.G.	Burke,	APS	DPP	2017

J. T. Trauger., Appl. Opt., 11, 1972.
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Summary: Moving Towards Diagnostic For !" and #" in High Temperature 
Magnetically Confined Plasmas Using Spatial Heterodyne Spectroscopy

• !" measurements appear feasible using high speed measurements of motional 
stark multiplet

• Horizontal view gives !"M, off midplane gives !"Æ
• #" measurement also possible using Stark multiplet

• Phase I SHS design completed, near deployment for first fluctuation data
• First light through phase I SHS allowed testing of integrated system in tokamak environment
• Need for improved filter transmission, compensation plate à changes in progress

• Next steps:
• Validate technique with low frequency (~10 kHz) !" or #" measurement at D3D
• Design Phase 2 spectrometer with geometric broadening compensation, run single coherent fiber 

bundle to D3D BES diagnostic lab

M.G.	Burke,	APS	DPP	2016
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