Near-Unity Aspect Ratio H-mode and ELM Studies ## K. E. Thome M. W. Bongard, J. L Barr, G. M. Bodner, M. G. Burke, R. J. Fonck, H. Frerichs, D. M. Kriete, J. M. Perry, J. A Reusch, O. Schmitz, D. J. Schlossberg H-mode Workshop IPP Garching, Germany October 21, 2015 ## H-mode Readily Accessible at Near-Unity A #### High-stress Ohmic Heating Solenoid #### H-mode achieved - $-P_{OH} >> P_{ITPA08}$ - Facilitated by HFS fueling - Similar to other STs¹ - Limited or diverted plasmas #### **PEGASUS Toroidal Experiment** | A | 1.15 - 1.3 | |---|--------------| | R (m) | 0.2 - 0.45 | | $I_{p}(MA)$ | ≤ 0.25 | | $B_{T}(T)$ | < 0.2 | | $\Delta t_{\mathrm{shot}}\left(\mathrm{s}\right)$ | ≤ 0.025 | | $Z_{ m eff}$ | ~ 1 | | Recycling | < 0.7 | | Coefficient | | #### Limited L Limited H **Diverted H** Fast visible imaging, $\Delta t \sim 30 \ \mu s$ ¹Field et al., Plasma Phys. Control. Fusion. 46, 981 (2004). ## Standard Signatures in OH H-mode Plasmas - Quiescent edge - Reduced D_α - Large and small ELMs - Bifurcation in $\phi_D(t)$ - Core impurity T_i increases - Increased core T_e indicated - CV only observed in H-mode (E_{ion}=392 eV) - Thomson $T_{eH}(0) > T_{eL}(0)$ - Increased core rotation ## **Energy Confinement Improves in H-mode** - Time-evolving magnetic equilibrium reconstructions used to calculate $\tau_{\rm e}$ - Challenges: short pulse, MHD, I_{wall} - Significant dW/dt - $W_k(\tau_e)$ increases after L-H transition - H_{98} increases from 0.5 to 1.0 - Ongoing: Virial analysis for β_p with fast boundary reconstruction code - $\beta_p \neq 1 + \mu$ at low-A - Grossly overestimates β_p, W_k - At low-A need to calculate integrals ## Edge Pedestals Measured with Probes - A ~ 1: very low B_T → low T_e - Unique pedestal measurements using insertable probes - Current pedestal observed - Measured with Hall Probe^{1,2} array - Scale length: $4 \rightarrow 2$ cm L to H - Preliminary Langmuir probe scans indicate pressure pedestal - Single-point, multi-shot profile - Some edge distortion present from MHD ¹Bongard *et al.*, Phy. Rev. Lett. **107**, 035003 (2011). ² Petty *et al.* Nucl. Fusion **42**, 1124 (2002). ## P_{I H} Measured in PEGASUS at *A*≈1.2 ## Vary P_{OH} with power scan - Transition time from ϕ_D bifurcation - Wide parameter range - $P_{OH} = 0.1 0.6 MW$ - $n_e = 0.5 4 \times 10^{19} \text{ m}^{-3}$ - Limited: Centerstack - Diverted: USN (favorable ∇B) - dW/dt by magnetic reconstruction - $\sim 30\%$ correction # P_{LH} Shows Strong Density Dependence #### Threshold Power vs. Density $$P_{LH_exp}\!\sim 0.7 P_{OH}$$ Survey of L and H-mode plasmas at different P_{OH} and n_e - P_{LH} increases with n_e - n_e dependence consistent with scalings - Density minimum not apparent - Topology independent - Diverted and limited P_{LH} similar # At low A, P_{LH} >> P_{ITPA08} - P_{LH} increasingly diverges from expectations as A → 1 - Discrepancy may hint at additional physics WISCONSIN MADISON ¹ Maingi et al., Nucl. Fusion, **50**, 064010 (2010). ² Martin et al., J. Phys.: Conf. Ser., 123, 012033 (2008). ³ Wesson, Tokamaks, 4th ed. (2011), p 630 # Some P_{I H} Results Consistent with FM³ Model - FM³ model reproduces P_{ITPA08} scaling - FM³: Predicts P_{LH} minimum for PEGASUS at n_e ~ 1 x10¹⁸ m⁻³ - $n_e/n_G << 0.1$, inaccessible due to runaways - P_{LH} topology independence: selfsimilar q profiles at A ~1 - Model does not explain strong P_{LH} dependence on A - Multi-Machine P_{LH} studies in progress/ proposed (NSTX-U, PEGASUS, DIII-D) Predictive Equilibrium @ $A \approx 1.2$ Limited Diverted ## A ~ 1 Enables Nonlinear ELM Studies - Filament structures observed - Coincident with D_{α} bursts - Small ("Type III") ELMs ubiquitous, less perturbing - $P_{OH} \sim P_{LH}$ - Large ("Type I") ELMs infrequent, violent - $-P_{OH} >> P_{LH}$ - Can cause H-L back-transition ## Quiescent Small ELM Large ELM ## ELM Magnetic Structure Varies with A - Measured with near-edge magnetics probe - Type III: A dependent - $A \le 1.4$: $n \le 1 3$ - PEGASUS and NSTX¹ - $-A \sim 3: n > 8^2$ - Type I: A independent - Intermediate-n, $n \sim 4 12^{2,3}$ - Low and high-A similar, but low-A lower n - Increased peeling drive at low A - Higher J_{edge} /B → lower n ¹ Maingi et al., Nucl. Fusion **45**, 1066 (2005). ² Kass *et al.*, Nucl. Fusion **38**, 111 (1998). ³ Perez *et al.*, Nucl. Fusion **44**, 609 (2004). ## Nonlinear ELM Precursors Observed - Magnetic signature of ELMs have multiple n components - Simultaneously unstable modes - Modes show different time evolutions (isolated with bandpass filter) - n = 8 grows continuously - n = 6 fluctuates prior to crash # Complex Evolution of J_{edge}(R,t) During ELMs Challenge: study nonlinear ELM dynamics at Alfvénic timescales ## Complex behavior with current-filament ejection Time-averaged qualitatively similar to JOREK¹ results ## Type I ELM Evolution ¹ Pamela et al., Plasma Phys. Control. Fusion **53**, 054014 (2011). # Motivates PEGASUS-Upgrade Proposal | | PEGASUS | PEGASUS-U | |----------------------------------|----------------|------------| | Ψ_{SOL} (mWb) | 40 | 138 / 170 | | $B_{T,max}$ (T) at R_0 | 0.14 | ~ 0.4 | | , | 0.15 | 0.3 | | $I_{p,max} (MA)$ $\Delta t (ms)$ | 15 | > 50 | | A | 1.15 | 1.22 | - Simultaneous measurements of p(R,t), J(R,t), $v_{o}(R,t)$ - New edge diagnostics (probe arrays, DNB) - Tests of Sauter neoclassical bootstrap model ## ELM Modification and Mitigation - Novel 3D-MP coil array - LHI current injectors in divertor, LFS regions # 3D-Magnetic Perturbation System Proposed Design study, fabrication ## Comprehensive 3D-MP system - LFS coils, spaced with ~equal-PEST angle from model equilibria - 12 toroidal x 7 poloidal array - Initial DC power systems for n=3 control - HFS 4-fold helical coil set #### Uniqueness - Wide spectral range - Local pedestal plasma response measurements # 3D Edge Current Injectors Support ELM Studies - Local helicity injection system provides 3D SOL current injection - $I_{inj} \le 5 \text{ kA}$, $J_{inj} \sim 1 \text{ kA/cm}^2$ Pulse extension and J(R) control - Strong 3D edge current perturbation - Edge biasing to modify rotation profiles - Similar to LHCD on EAST¹ # Unique Studies of H-mode Physics at A~1 - H-mode achieved in plasma with pedestal diagnostic access - Standard characteristics: pedestal; low D_{α} ; increased τ_e ; $H_{98} \sim 1$; etc. - Features unique to low-A emerging - Strong P_{LH} threshold scaling with A - Little to no difference between limited and diverted H-modes - Operating regime allows detailed studies of ELMs - ELM mode numbers at low-A systematically lower than high-A - Nonlinear ELM dynamics measured at Alfvénic timescales - Complements experiments on larger fusion facilities - Detailed measurements can elucidate more limited results on larger facilities - Proposed upgrade allows detailed study of nonlinear ELMs and pedestal physics