Near-Unity Aspect Ratio H-mode and ELM Studies

K. E. Thome

M. W. Bongard, J. L Barr, G. M. Bodner, M. G. Burke, R. J. Fonck, H. Frerichs, D. M. Kriete, J. M. Perry, J. A Reusch, O. Schmitz, D. J. Schlossberg

H-mode Workshop

IPP Garching, Germany October 21, 2015

H-mode Readily Accessible at Near-Unity A

High-stress Ohmic Heating Solenoid

H-mode achieved

- $-P_{OH} >> P_{ITPA08}$
- Facilitated by HFS fueling
 - Similar to other STs¹
- Limited or diverted plasmas

PEGASUS Toroidal Experiment

A	1.15 - 1.3
R (m)	0.2 - 0.45
$I_{p}(MA)$	≤ 0.25
$B_{T}(T)$	< 0.2
$\Delta t_{\mathrm{shot}}\left(\mathrm{s}\right)$	≤ 0.025
$Z_{ m eff}$	~ 1
Recycling	< 0.7
Coefficient	

Limited L

Limited H

Diverted H

Fast visible imaging, $\Delta t \sim 30 \ \mu s$

¹Field et al., Plasma Phys. Control. Fusion. 46, 981 (2004).

Standard Signatures in OH H-mode Plasmas

- Quiescent edge
- Reduced D_α
- Large and small ELMs
- Bifurcation in $\phi_D(t)$
- Core impurity T_i increases
- Increased core T_e indicated
 - CV only observed in H-mode (E_{ion}=392 eV)
 - Thomson $T_{eH}(0) > T_{eL}(0)$
- Increased core rotation

Energy Confinement Improves in H-mode

- Time-evolving magnetic equilibrium reconstructions used to calculate $\tau_{\rm e}$
 - Challenges: short pulse, MHD, I_{wall}
 - Significant dW/dt
- $W_k(\tau_e)$ increases after L-H transition
 - H_{98} increases from 0.5 to 1.0
- Ongoing: Virial analysis for β_p with fast boundary reconstruction code
 - $\beta_p \neq 1 + \mu$ at low-A
 - Grossly overestimates β_p, W_k
 - At low-A need to calculate integrals

Edge Pedestals Measured with Probes

- A ~ 1: very low B_T → low T_e
 - Unique pedestal measurements using insertable probes
- Current pedestal observed
 - Measured with Hall Probe^{1,2} array
 - Scale length: $4 \rightarrow 2$ cm L to H

- Preliminary Langmuir probe scans indicate pressure pedestal
 - Single-point, multi-shot profile
 - Some edge distortion present from MHD

¹Bongard *et al.*, Phy. Rev. Lett. **107**, 035003 (2011).

² Petty *et al.* Nucl. Fusion **42**, 1124 (2002).

P_{I H} Measured in PEGASUS at *A*≈1.2

Vary P_{OH} with power scan

- Transition time from ϕ_D bifurcation
- Wide parameter range
 - $P_{OH} = 0.1 0.6 MW$
 - $n_e = 0.5 4 \times 10^{19} \text{ m}^{-3}$
 - Limited: Centerstack
 - Diverted: USN (favorable ∇B)

- dW/dt by magnetic reconstruction
- $\sim 30\%$ correction

P_{LH} Shows Strong Density Dependence

Threshold Power vs. Density

$$P_{LH_exp}\!\sim 0.7 P_{OH}$$

 Survey of L and H-mode plasmas at different P_{OH} and n_e

- P_{LH} increases with n_e
 - n_e dependence consistent with scalings
 - Density minimum not apparent

- Topology independent
 - Diverted and limited P_{LH} similar

At low A, P_{LH} >> P_{ITPA08}

- P_{LH} increasingly diverges from expectations as A → 1
- Discrepancy may hint at additional physics

WISCONSIN MADISON

¹ Maingi et al., Nucl. Fusion, **50**, 064010 (2010).

² Martin et al., J. Phys.: Conf. Ser., 123, 012033 (2008).

³ Wesson, Tokamaks, 4th ed. (2011), p 630

Some P_{I H} Results Consistent with FM³ Model

- FM³ model reproduces P_{ITPA08} scaling
- FM³: Predicts P_{LH} minimum for PEGASUS at n_e ~ 1 x10¹⁸ m⁻³
 - $n_e/n_G << 0.1$, inaccessible due to runaways
- P_{LH} topology independence: selfsimilar q profiles at A ~1

- Model does not explain strong P_{LH} dependence on A
 - Multi-Machine P_{LH} studies in progress/ proposed (NSTX-U, PEGASUS, DIII-D)

Predictive Equilibrium @ $A \approx 1.2$

Limited

Diverted

A ~ 1 Enables Nonlinear ELM Studies

- Filament structures observed
 - Coincident with D_{α} bursts
- Small ("Type III") ELMs ubiquitous, less perturbing
 - $P_{OH} \sim P_{LH}$
- Large ("Type I") ELMs infrequent, violent
 - $-P_{OH} >> P_{LH}$
 - Can cause H-L back-transition

Quiescent Small ELM Large ELM

ELM Magnetic Structure Varies with A

- Measured with near-edge magnetics probe
- Type III: A dependent
 - $A \le 1.4$: $n \le 1 3$
 - PEGASUS and NSTX¹
 - $-A \sim 3: n > 8^2$
- Type I: A independent
 - Intermediate-n, $n \sim 4 12^{2,3}$
 - Low and high-A similar, but low-A lower n
- Increased peeling drive at low A
 - Higher J_{edge} /B → lower n

¹ Maingi et al., Nucl. Fusion **45**, 1066 (2005).

² Kass *et al.*, Nucl. Fusion **38**, 111 (1998).

³ Perez *et al.*, Nucl. Fusion **44**, 609 (2004).

Nonlinear ELM Precursors Observed

- Magnetic signature of ELMs have multiple n components
 - Simultaneously unstable modes

- Modes show different time evolutions (isolated with bandpass filter)
 - n = 8 grows continuously
 - n = 6 fluctuates prior to crash

Complex Evolution of J_{edge}(R,t) During ELMs

 Challenge: study nonlinear ELM dynamics at Alfvénic timescales

Complex behavior with current-filament ejection

 Time-averaged qualitatively similar to JOREK¹ results

Type I ELM Evolution

¹ Pamela et al., Plasma Phys. Control. Fusion **53**, 054014 (2011).

Motivates PEGASUS-Upgrade Proposal

	PEGASUS	PEGASUS-U
Ψ_{SOL} (mWb)	40	138 / 170
$B_{T,max}$ (T) at R_0	0.14	~ 0.4
,	0.15	0.3
$I_{p,max} (MA)$ $\Delta t (ms)$	15	> 50
A	1.15	1.22

- Simultaneous measurements of p(R,t), J(R,t), $v_{o}(R,t)$
 - New edge diagnostics (probe arrays, DNB)
- Tests of Sauter neoclassical bootstrap model

ELM Modification and Mitigation

- Novel 3D-MP coil array
- LHI current injectors in divertor, LFS regions

3D-Magnetic Perturbation System Proposed

Design study, fabrication

Comprehensive 3D-MP system

- LFS coils, spaced with ~equal-PEST angle from model equilibria
 - 12 toroidal x 7 poloidal array
 - Initial DC power systems for n=3 control
- HFS 4-fold helical coil set

Uniqueness

- Wide spectral range
- Local pedestal plasma response measurements

3D Edge Current Injectors Support ELM Studies

- Local helicity injection system provides 3D SOL current injection
 - $I_{inj} \le 5 \text{ kA}$, $J_{inj} \sim 1 \text{ kA/cm}^2$

Pulse extension and J(R) control

- Strong 3D edge current perturbation
- Edge biasing to modify rotation profiles
- Similar to LHCD on EAST¹

Unique Studies of H-mode Physics at A~1

- H-mode achieved in plasma with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_{α} ; increased τ_e ; $H_{98} \sim 1$; etc.
- Features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Little to no difference between limited and diverted H-modes
- Operating regime allows detailed studies of ELMs
 - ELM mode numbers at low-A systematically lower than high-A
 - Nonlinear ELM dynamics measured at Alfvénic timescales
- Complements experiments on larger fusion facilities
 - Detailed measurements can elucidate more limited results on larger facilities
 - Proposed upgrade allows detailed study of nonlinear ELMs and pedestal physics

