Effect of Aspect Ratio on H-mode and ELM Characteristics

K. E. Thome

M. W. Bongard, J. L. Barr, G. M. Bodner, M. G. Burke, R. J. Fonck, H. Frerichs, D. M. Kriete, J. M. Perry, J. A Reusch, O. Schmitz, D. J. Schlossberg

57th Annual Meeting of the APS Division of Plasma Physics

Savannah, GA November 17, 2015

Layout

8.5" x 11"

8' W x 4' H

		Title	Banner		
Motivation I	H-mode Characteristics I	H-mode Characteristics II	Power Threshold	ELMs	Future Work
Motivation II	Energy Confinement Improves in H- Mode	Pegasus Hall Probe Deployed	Noise Shielding in Pegasus	Large Type I and II ELMs observed	Pressure correlation with MHD fluctuation
Pegasus	Pegasus has the ability to produce current and pressure pedestal	J (R,t) calculated from Ampere's Law	Simplified LP Circuit/ Grounding Scheme	Hall Probe Observes Large ELM dynamics through discharge	Pressure profiles suggest existence of edge pedestal
H-mode Upgrades	P _{LH} dependence upon Aspect Ratio	Direct J Profiles obtained in Pegasus	Triple Probe Theory	Closer Inspection of J _{edge} reveals complex behavior	Future experiments with low MHD are needed

H-mode Studies Across Physics Regimes Crucial

- ITER will operate in H-mode
- Parameter variations critical to validate theories of H-mode and ELM behavior
- Toroidal aspect ratio A changes H-mode access, equilibrium, and stability
- Low-A H-mode differences
 - Fueling location importance
 - P_{LH} and ELM characteristics
 - Magnetic configuration effects

 $A \ge 1.25, q_{\psi} \ge 12$

Peng, Phys. Plasmas, 7, 1681 (2000).

A ~ 1 Operations Provide Access to AT Physics

A ~ 1 → high I_D at very low B_T

- Excitation of peeling modes without $J_{RS}^{1,2}$
- Easy access to H-mode regime and ELMs
- Neoclassical effects (resistivity enhancement)

Modest-sized plasma and relatively low T_e

- Allows diagnostic access to pedestal
- Pedestal $J_{\phi}(R, t)$, p(R, t), and $v_{\phi}(R, t)$ via probes

¹ Bongard et al., Phys. Rev. Lett **107**, 035003 (2011).

² Bongard *et al.*, Nucl. Fusion **54**, 114008 (2014).

PEGASUS Provides H-mode Plasmas at Ultralow-A

High-stress Ohmic Heating Solenoid

Experimental Parameters

A	1.15 - 1.3
R(m)	0.2 - 0.45
$I_{p}(MA)$	≤ 0.25
$B_{T}(T)$	< 0.2
$\Delta t_{\rm shot}$ (s)	≤ 0.025
$Z_{ m eff}$	~ 1
Recycling	< 0.7
Coefficient	

Recent Upgrades for H-mode Studies

- High-field-side (HFS fueling)
 - Two valves (top and bottom)
 - Improved density control

- Augmented divertor coils
 - New external divertor set
 - Allows SN, DN operation

- Radial field coils
 - Vertical position control

H-mode Readily Accessed at Near-Unity A

• $A \approx 1 \rightarrow \text{low B}_T \rightarrow \text{low P}_{LH}$ $P_{LH} \sim n_e^{0.717} B_T^{0.803} S^{0.941}$

H-mode achieved

- HFS neutral fueling
 - Similar to other STs
- Limited or diverted plasmas

Fast visible imaging, $\Delta t \sim 30 \ \mu s$

Standard Signatures Observed in OH H-mode

- Quiescent edge
 - Edge current and pressure pedestals
- Reduced D_a
- Large and small ELMs
- Bifurcation in φ_D
 - At $A \sim 1$, indicates current redistribution

Energy Confinement Improves in H-mode

• Equilibrium reconstructions yield $\tau_{\rm e}$

$$\tau_e = \frac{W_k}{P_{in} - dW / dt - P_{RAD}}$$

- Challenges: short pulse, MHD, I_{wall}(t)
- Significant dW/dt

- $W_k(\tau_e)$ increases after L-H transition
 - H₉₈ increases from 0.5 to 1.0

• Ongoing: Virial analysis for fast τ_e

Full Virial Analysis is Required as A → 1

• Provides magnetics based β_p , W_k , and τ_e^{-1}

- High-A: β_{p,circ} ≈ 1 + μ
 - Overestimates β_p , W_k at low-A
 - $\quad \mu = 4\pi B_{T0} R_0 \Delta \Phi / B_{pa}^{2} \Omega$

- Low-A: $\beta_p = S_1/2 + S_2/2(1 R_T/R_0) + \mu$
 - Full treatment accurately determines β_p , W_k
- In progress: fast boundary reconstruction code for full treatment at A ~ 1

T_i and T_e Increase in H-mode

OH plasmas: T_i << T_e

• Impurity T_i doubles

- Increasing T_e(0)
 - Increasing, peaking CV emission observed in H-mode

Thomson Scattering Indicates Higher H-mode T_e

- Initial measurements
 - Grating optimized: $T_e \le 100 \text{ eV}$
- L-mode: $T_e(0) \sim 150 \text{ eV}$
- H-mode: $T_{e, H}(0) > T_{e, L}(0)$
 - Spectrum broadened off low T_e grating
 - Comparable n_e, but lower peak emission
- Diagnostic upgrades improve spatial and T_e resolution
 - Alternate grating: T_e ≤ 1 keV

Strengthened Core Rotation in H-mode

- No external momentum input intrinsic rotation
- Chordally-integrated velocity profiles show low rotation in L-mode

Edge Pedestals Measured with Probes

- A ~ 1: very low B_T → low T_e
 - Unique pedestal access with probes

- Inter-ELM current pedestal formation
 - Measured with Hall probe array^{1,2}
 - Scale length: $4 \rightarrow 2$ cm L to H

- Pressure pedestal observed
 - Multi-shot scan with triple Langmuir probe
 - Edge distortion effects removed
 - See poster 120 for more information

¹Bongard *et al.*, Phy. Rev. Lett. **107**, 035003 (2011).

² Petty *et al.* Nucl. Fusion **42**, 1124 (2002).

L-H Power Threshold Determined at $A \approx 1.2$

- Extends P_{LH} to A ~ 1 regime
- Vary P_{OH} with power scan
 - Transition time from ϕ_D bifurcation
 - Wide parameter range
 - $P_{OH} = 0.1 0.6 \text{ MW}$
 - $n_e = 0.5 4x10^{19} \text{ m}^{-3}$
 - Limited: Centerstack
 - Diverted: USN (favorable ∇B)
- $P_{LH,exp} = P_{OH} dW/dt$
 - dW/dt by magnetic reconstruction
 - $-\sim 30\%$ correction

P_{LH} Shows Strong Density Dependence

Threshold Power vs. Density

$$P_{LH_exp}\!\sim 0.7 P_{OH}$$

 Survey of L and H-mode plasmas at different P_{OH} and n_e

- P_{LH} increases with n_e
 - n_e dependence consistent with scalings
 - Density minimum not apparent

- Topology independent
 - Diverted and limited P_{LH} similar

At low A, P_{LH} >> P_{ITPA08}

- P_{LH} increasingly diverges from expectations as A → 1
- Discrepancy may hint at additional physics

WISCONSIN MADISON

¹ Maingi *et al.*, Nucl. Fusion, **50**, 064010 (2010).

² Martin et al., J. Phys.: Conf. Ser., **123**, 012033 (2008).

³ Wesson, Tokamaks, 4th ed. (2011), p 630.

Some P_{I H} Results Consistent with FM³ Model

- FM³ model reproduces P_{ITPA08} scaling
- FM³: $P_{LH}(n_e)$ minimum ~ 1 x10¹⁸ m⁻³
 - $n_e/n_G << 0.1$, inaccessible due to runaways
- P_{LH} topology independence

$$\frac{P_{L-H}^{\lim}}{P_{L-H}^{div}} \approx \left(\frac{q_*^{\lim}}{q_*^{div}}\right)^{-7/9} \longrightarrow 1 @ A \sim 1$$

- Strong P_{LH}(A) not understood
 - Multi-machine P_{LH} studies in progress/ proposed (NSTX-U, PEGASUS, DIII-D)

Predictive Equilibria @ $A \approx 1.2$

Limited

Diverted

A ~ 1 Enables Nonlinear ELM Studies

- Filament structures observed
 - Coincident with D_{α} bursts
- Small ("Type III") ELMs ubiquitous, less perturbing
 - $P_{OH} \sim P_{LH}$
- Large ("Type I") ELMs infrequent, violent
 - $-P_{OH} >> P_{LH}$
 - Can cause H-L back-transition

ELM Magnetic Structure Varies with A

- Edge Mirnov array measures ELM toroidal mode spectrum
 - $-n \le 20$ resolved by cross-phase analyses
- Type III: A dependent
 - $A \le 1.4$: $n \le 1 4$
 - PEGASUS and NSTX¹
 - $-A \sim 3: n > 8^2$
- Type I: A independent
 - Intermediate- $n^{2,3}$
 - Low-A devices have lower n
- Increased peeling drive at low-A
 - Higher J_{edge} /B → lower n

¹ Maingi *et al.*, Nucl. Fusion **45**, 1066 (2005).

² Kass *et al.*, Nucl. Fusion **38**, 111 (1998).

³ Perez et al., Nucl. Fusion **44**, 609 (2004).

Nonlinear ELM Precursors Observed

- Magnetic signature of ELMs have multiple n components
 - Simultaneously unstable modes

- Modes show different time evolutions
 - Isolated with bandpass filter
 - n = 8 grows continuously
 - n = 6 fluctuates prior to crash

Complex Evolution of J_{edge}(R,t) During ELMs

Challenge: study nonlinear ELMs at Alfvénic timescales

Complex behavior with current-filament ejection

 Time-averaged data qualitatively similar to JOREK¹

¹ Pamela et al., Plasma Phys. Control. Fusion **53**, 054014 (2011).

Type I ELM Evolution

Results Motivate Proposed PEGASUS-Upgrade

	PEGASUS	PEGASUS-U
Ψ_{SOL} (mWb)	40	138 / 170
$B_{T,max}$ (T) at R_0	0.14	~ 0.4
,	0.15	0.3
$I_{p,max} (MA)$ $\Delta t (ms)$	15	> 50
A	1.15	1.22

- Simultaneous measurements of p(R,t), J(R,t), $v_{o}(R,t)$
 - New edge diagnostics (probe arrays, DNB)
- Tests of neoclassical physics

ELM Modification and Mitigation

- Novel 3D-MP coil array
- LHI current injectors in divertor, LFS regions

3D-Magnetic Perturbation System Proposed

Full design study planned

Proposal includes initial tests

Comprehensive 3D-MP system

- LFS coils, spaced with ~equal-PEST angle
 - 12 toroidal x 7 poloidal array
 - Initial DC power systems for n=3 control
- HFS 4-fold helical coil set

Uniqueness

- Wide spectral range
- Measure internal plasma response

Toroidal Angle [deg]

3D Edge Current Injectors Support ELM Studies

- Local helicity injection system provides 3D SOL current injection
 - $I_{inj} \le 5 \text{ kA}$, $J_{inj} \sim 1 \text{ kA/cm}^2$

Pulse extension and J(R) control

- Strong 3D edge current perturbation
- Edge biasing to modify rotation profiles
- Similar to LHCD on EAST¹

Unique Studies of H-mode Physics at A~1

- H-mode achieved in plasma with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_{α} ; increased τ_e ; $H_{98} \sim 1$; etc.
- P_{LH} features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Little to no difference between limited and diverted H-modes
- Operating regime allows detailed studies of ELMs
 - ELM mode numbers at low-A systematically lower than high-A
 - Nonlinear ELM dynamics measured at Alfvénic timescales
- Upgrade allows detailed study of nonlinear ELMs, pedestal physics
 - Complements experiments on larger fusion facilities
 - Detailed measurements can elucidate more limited results on larger facilities

