Non-Solenoidal Tokamak Startup Using High-Field-Side Local Helicity Injection on the Pegasus ST

Justin M. Perry

G.M. Bodner, M.W. Bongard, M.G. Burke, R.J. Fonck, J.L. Pachicano, C. Pierren, N.J. Richner, C. Rodriguez Sanchez, D.J. Schlossberg, J.A. Reusch, and J.D. Weberski

APS-DPP Milwaukee, WI

10-24-2017

A New Campaign Studies Local Helicity Injection (LHI) Using High-Field-Side Injectors

- Edge current extracted from injectors
- Relaxation to tokamak-like state via helicity-conserving instabilities

Current drive quantified by:

$$V_{\it LHI} \gg rac{A_{\it inj} B_{\it j ,inj}}{igamma} V_{\it inj}$$

Injector Geometries Emphasize Different Current Drives

Low-Field-Side Injection:

- Injectors on outboard mid-plane
- High R_{ini} → low V_{LHI}
- Dynamic shape → strong V_{IND}

High-Field-Side Injection:

- Injectors in lower divertor
- Low R_{inj} → strong V_{LHI}
- Static shape → minimal V_{IND}

LHI Plasmas Exhibit MHD Activity on Multiple Scales

1. Instability of current filaments

- Long wavelength, low frequency:
 - Line-tied kink
 - Filament merger and reconnection
 - Dominates external magnetics
- Short wavelength, high frequency:
 - Correlated with anomalous ion heating
 - Reconnection-driven turbulence?

Instabilities of the tokamak plasma

- Tearing, kink modes
- Relevant to hand-off

Current Filament Reconnection

* J. O'Bryan, Physics of Plasmas, 19, 080701 (2012)

Anomalous Ion Heating

Abrupt Transition in MHD Behavior During HFS Injection

- Large-amplitude, low freq. in early phase
 - Large scale n=1 at 20-80 kHz
 - Line-tied kink of current streams

- Abrupt reduction in low frequency activity under some conditions:
 - I_p growth continues
 - Interpreted as kink stabilization

 Several hypotheses for stabilization mechanism under consideration

Shift to High Frequency Inside Plasma Edge Suggests Short Wavelength Current Drive Mechanism

• External Measurement $(R > R_{edge})$

- Reduction at all frequencies
- Suppression of large n=1 mode
- Remaining \tilde{b}/B similar to L-mode

• Internal Measurement $(R < R_{edge})$

- High-f activity increases after transition
- Turbulence, reconnection on smaller scale?
- Continued I_p growth suggests short wavelength activity drives current

I_p Increases Linearly with V_{LHI} when $V_{IND} \sim 0$

- Static plasma geometry → V_{IND}~0
 - Linear I_p scaling suggests fixed $\langle \eta \rangle$
 - Z_{eff}, n_e, plasma geometry effects not yet accounted for

- Greater current drive efficacy following MHD transition
 - Low MHD: up to 50% more I_p
 - Relationship to confinement?

Confinement Properties Set Current Drive Scaling for LHI

- HI balanced by resistive dissipation
 - $-\langle \eta \rangle$ influenced by confinement
- Crude estimates of confinement inform operation space
 - Strongly dependent on Z_{eff}
- Resistive dissipation complicated by:
 - Dual confinement zones?
 - Neoclassical trapping, non-thermal electrons
 - Hyper-resistivity?

High-Field-Side LHI at A~1 Provides Access to β_T ~1

- A~1:
 - Naturally high κ
 - High I_N stability limit
- HFS LHI: unique operation space
 - High I_p possible at low I_{TF}
 - $-I_N = 5A \frac{I_p}{I_{TF}} > 10$ accessible
 - Naturally low ℓ_i
 - Strong auxiliary ion heating
- See invited talk Thursday AM
 - TI3.00004, J.A. Reusch

1. D.J. Schlossberg, PRL. 119 035001 (2017)

High-Field-Side LHI Builds the Physics Basis for High-I_p Non-inductive Startup and Sustainment

- High-field-side LHI: increased V_{LHI}, reduced V_{IND}
- Novel MHD behavior suggests short wavelength current drive mechanism
- Attainable I_p scales with V_{LHI}; confinement under investigation
- $\beta_T \approx 100\%$ using unique properties of HFS LHI at A~1

See Pegasus posters: Thursday PM

