

Introduction

- Helicity injection research on Pegasus motivates a set of facility upgrades
 - Improved toroidal field strength and injector bias system can increase plasma current from helicity injection
 - Increased position and shaping control can improve coupling of plasma to helicity injectors
 - Increasing complexity of power supply systems demands improved feedback control and fault handling

PEGASUS: A University Scale, Ultralow-A ST

Equilibrium Field Coils

Vacuum Vessel

Experimental Parameters

<u>Parameter</u>	<u>Achieved</u>	<u>Goals</u>
A	1.15 - 1.3	1.12 - 1.3
R(m)	0.2 - 0.45	0.2 - 0.45
$I_{p}(MA)$	≤ .21	≤ 0.30
I_{N}^{\prime} (MA/m-T)	6 - 12	6 - 20
$RB_{t}(T-m)$	≤ 0.06	≤ 0.1
κ	1.4 - 3.7	1.4 - 3.7
$\tau_{\rm shot}$ (s)	≤ 0.025	≤ 0.05
β_{t} (%)	≤ 25	> 40
$P_{HHFW}(MW)$	0.2	1.0

Major research thrusts include:

- Non-inductive startup and sustainment
- Tokamak physics in small aspect ratio:
 - $High-I_N$, $high-\beta$ stability limits
 - *ELM-relevant edge MHD activity*

Point-Source Helicity Injectors

Helicity Injector Physics Motivates Facility Upgrades

- Taylor Limit maximum I_p from HI:
 - Depends on injector current, toroidal field current, injector width
- Helicity injection loop voltage:
 - Proportional to B normal to injector surface, injector area, injector bias voltage
- Motivates increases in I_{inj}, I_{TF} through facility upgrades
 - Upgraded TF power supplies
 - Upgraded injector bias system
- Ref: D.J. Battaglia, Tokamak Startup Using Outboard Current Injection on the Pegasus Toroidal Experiment Nuclear Fusion 51, 073029 (2011)

$$I_{p,\text{max}} \propto \sqrt{\frac{I_{inj} \bullet I_{TF}}{w}}$$

$$V_{e\!f\!f} \propto rac{B_{inj} ullet A_{inj} ullet V_{bias}}{\psi_T}$$

Compact Plasma Arc Sources Provide Dense Plasma for Electron Current Extraction

- Plasma arc(s) biased relative to anode:
 - Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_NA_{inj}$$

 V_{ini} - injector voltage

 B_N - normal B field at gun aperture

A_{ini} - injector area

- Arc plasma fully ionized
 - $N_e \sim 10^{20} \text{ m}^{-3}$
 - $T_e \sim 10 \text{ eV}$
 - Dia = 1.6 cm
 - $I_{arc} \sim 2 \text{ kA}$

Pegasus Employs Modular Switching Power Supplies

- Two banks of switching power supplies on Pegasus
 - Bank A: 12 x 2700V IGCT Bridges
 - Ohmic
 - New high voltage injector bias
 - Bank B: 28 x 900V IGBT Bridges
 - Toroidal Field Coils
 - Poloidal Fields Coils
 - Divertor Coils
 - Low voltage injector bias
- Power supplies are modular and reconfigurable
 - Allows reassignment of bridges between systems as needed

Systems Powered by Three Types of Bridges

One Quadrant Bridges

- Unipolar drive / coast
- − e.g., − injector bias system

Two Quadrant Bridges

- Unipolar drive / regen
- e.g., toroidal field coils

Four Quadrant Bridges

- Bipolar drive / regen
- e.g., ohmic

New Bridge Technology Enables Doubling of Toroidal Field

- Improved IGBT technology supports TF increase from 0.15T to 0.3T
 - 6 4-kA IGBT bridges replaced by 8 6-kA
 IGBT bridges
 - 288 kA-turns → 576 kA-turns
 - Improved performance enables
 - Switching for twice the duration at same current
 - Switching for same duration at 50% higher current
- Original TF bridges now free for other use
 - PF upgrade / divertor coils

New TF silicon

Advantages of New IGBT Technology

Present System: Eupec FZ2400R17KE3 IGBT

- Steady state voltage rating: 1200V, 2.4kA
- Pulsed rating: 900V, 2.4kA at 1kHz
 Switching Frequency
- Repeated operation at 2x switch rating (4.8kA)
- Voltage switching up to 3kHz, dependent on switch topology, controller
- Heat sink: traditional copper base plate

Augmented System: Eupec FZ3600R17HP4-B2 IGBT

- Steady state voltage rating: 1700V, 3.6kA
- Pulsed rating: 900V, 3.6kA at 1kHz switching frequency
- Repeated operation at 2x switch rating (7.2kA)
- Voltage switching up to 10+ kHz, dependent on controller
- Heat sink: AlSiC base plate for increased thermal cycling capability (better pulsed power performance)

New IGCT Bias System Increases Injector Current and Voltage

- Four 1-quad IGCT bridges supply up to 14kA injector current at up to 2kV
- Helicity rate ~ V_{bias}
- Taylor Limit ~ √I_{inj}

Increased Injector Current for Helicity Drive

IGBT Bias System

IGCT Bias System

Planned Expansion of Poloidal Field Coils

- Presently poloidal field is driven by 8 coils sets with a total of 30 turns
- PF time response important for position control, poloidal induction
 - Limited by coil rise time (L/R),
 penetration of vacuum vessel
- Modifications chosen to improve time response:
 - Decrease turns per coil set
 - Increase number of independent coil sets, using former TF power supplies

More Independently Driven PF Coil Sets

Modifications to coil sets 3 and 6:

- new turns added above and below
- Each set split into 2 sets of 3 turns

Number of Turns Drives PF Response Time

- Wall code simulations used to find optimal # turns / coil set in Pegasus
 - Balance of coil rise time vs.
 wall penetration time
- Response time characterized using 0.5ms square pulse
 - Figure of merit: B_z(t) at
 R=0.4m
- 3 turns/set gives optimal response time for available power supplies

New Divertor Coils Will Enable Full Separatrix Operation

New Divertors

- New divertor coils designed
 - achieve higher helicity injection rate through flux expansion in divertor region
 - Conduct H-mode studies; path towards high-β
- 26 turns carrying up to 4kA support single null and double null topology with I_D≤300kA
- Full divertor design presented by P. Shriwise
 - Poster NP8.00067

Exploration of Improved Vertical Position Control

- Plasma vertical position control desirable:
 - Compensates for magnetic field errors
 - Provides control flexibility
 - Optimize current coupling to helicity injector
- Three avenues under consideration:
 - Run top/bottom divertor coils in opposing directions (anti-series)
 - Additional turns to PF coils closest to midplane – running opposed current
 - Run main PF coils up-down assymetric

Control Enhancements Accompany Power Supply Upgrades

- Power supply control system improvements motivated by:
 - Increasing number of bridges require additional control channels
 - Need to handle and log hardware faults
 - Advanced feedback control of magnetic field coils and DC helicity injectors
 - Need for more independent feedback controllers and fault detectors
- Two approaches being pursued to implement these goals
 - Near-term: improvements to existing analog system
 - Medium-term: advanced digital control (FPGA)

Near Term Control System Modifications

- Stage 1: Improvements to present analog system
 - Improved bridge protection logic
 - Deployed more PWMs
 - CAMAC timing improvements

Digital Feedback Control

Stage 2: Digital control system

- based on NI FPGA technology
- Enables ~5MHz digital polling of bridge states
- FPGA level fault handling
- Realtime controller provides
 5kHz feedback control
- Fully replaces analog PWM,
 splitter/combiner hardware

Summary

A set of current and planned upgrades will improve the physics capability of Pegasus

- Power supply upgrades boost HI capabilites:
 - Toroidal field kA-turns doubled
 - High voltage, high current injector bias system
- Magnetic field coils enable increased position and shaping control
 - Expanded PF coils for faster time response
 - New divertor coils will allow improved helicity injection, H-mode studies
 - Vertical position control options under consideration
- Control systems advanced to meet needs of new power systems
 - Near term: improvements to analog control systems
 - Medium term: advanced digital control

