Low-f MHD and Reconnection Activity During Local Helicity Injection

J.L. Barr, M.W. Bongard, M. G. Burke, R.J. Fonck, J.A. Reusch, N.J. Richner

58th APS DPP Annual Meeting

October 31st - November 4th 2016

San Jose, CA

LHI MHD and Reconnection

- LHI exhibits large Alfvénic, n=1 MHD activity
 - Both continuous and bursting behavior
 - Structure consistent with kinking of injected current streams
- NIMROD simulations predict under-lying current drive mechanism of LHI
 - Current drive via periodic large-scale reconnection events
 - Many points of qualitative agreement with experiment
- Injector stream-to-stream reconnection drives anomalous ion heating in LHI
 - Both co-injected streams and adjacent windings of individual streams
 - Observed as soon as injection begins

LHI Provides Robust Non-Solenoidal Startup on the PEGASUS ST

- Non-solenoidal ST Startup
 - Local Helicity Injection
- Tokamak Physics at $A \ge 1.15$
 - H-mode access, high β

LHI Injects Current, Helicity to Form and Drive Tokamak-like Plasmas

NIMROD Identifies Current Stream Reconnection as a Current Drive Source

NIMROD: Single divertor injector, no inductive drive

- field lines
- attract
- off current rings
- Repeated events build current, poloidal flux
- After LHI off: flux-surfaces heal to Tokamak plasma

Low-f, n=1 Activity in LHI

LFS LHI Plasmas Exhibit Large n=1 Magnetic Fluctuations

- Large n=1 activity ubiquitous in LFS LHI discharges
 - Often begins continuous, transitions to bursting behavior
 - $-15 \text{ kHz} \le f \le 70 \text{ kHz}$
 - $-\delta b/B_t \sim 1-5\%$

NIMROD Predicts Current Stream Motion, Reconnection Source of Magnetic Activity

- NIMROD reconnection events:
 - Provide current drive
 - Source of Alfvénic MHD phenomena
- Qualitative agreement with experiment:
 - n=1 > n=2-10 combined
 - Similar frequencies: 5-20 kHz
 - Jumps in toroidal current

Bursting n=1 Activity Coincides with Discrete n=0 Component

- Magnetic spectra includes:
 - n=1 during LHI
 - n=0 plasma motion, growth
- Bursting behavior:
 - Discrete n=0 inward motion

N=1 is Mode Spatially Localized to the LFS

LFS magnetics:

Predominantly n=1 activity

HFS magnetics:

 Predominantly n=0 plasma motion, growth

n=1 Source: Unstable Injected Current Streams

n=1 MHD Activity is Localized Near the Injector Radius

Local B_z measurements:

- Radial localization of n=1 activity
- Measured with Hall Sensor array probe

- Repeated discharges
- During bursting phase

n=1 Amplitude is Toroidally Asymmetric

- The n=1 mode amplitude is toroidally asymmetric
 - Smallest near the injector face
- Toroidal asymmetry follows changes to injector location
- Line-tied kink-like structure
 - Node at injector radius
- Injected current streams are strongly kink unstable
 - $I_{inj} = 2-3 \text{ kA}$, $A_{inj} = 2 \text{ cm}^2$ See: D. D. Ryutuv et al., Phys. Plasmas 13, 032105 (2006)

I. Furno et al., Phys. Rev. Lett. 97, 015002 (2006)

LFS Poloidal Magnetic Signals are Consistent with Oscillating Stream Source

- Reduced model of oscillating filament source with I_{inj}
 - Closely recreates measured LFS B_z phase, amplitude
 - Best fit location: R=59 cm, Z=13 cm

n=1 Activity in LHI is a Product of Injected Current Stream Motion

- Current stream oscillations = source of magnetic phenomena
 - Bursting behavior, spectra, amplitudes similar to simulation
 - Localization to LFS near injector radius

- Outstanding issues:
 - Relative fraction of n=1 activity from stream motion vs. Alfvén waves
 - Is the NIMROD predicted reconnection mechanism and induction sufficient to explain current buildup in experiment?

Anomalous Ion Heating

During LHI Current Drive T_i > T_e

- $T_i \ge T_e \sim 100 \text{ eV}$
- $T_{i,LHI} > 10x T_{i,OH}$
- T_{i,LHI} as large as 650 eV
- Large amplitude MHD associated with magnetic reconnection
- $T_{i,\perp}$ increase agrees with reconnection theory

$T_i(R_{tan})$ Indicates Edge Localized Heating, Consistent with Filament Location

- OV T_i largest early in the discharge, but sustained over several confinement times
- Edge OV T_i peaking goes away after injector shutoff
- LHI Core $T_i > 100$ eV, substantially larger than core OV T_i in ohmic:

Helium-II T_i Scales as Predicted by Magnetic Reconnection Theory

- High B_z experiments prevent helical winding reconnection
 - No large scale relaxation → no
 Tokamak
- Co-injected filament reconnection only:

$$n_b \propto \frac{I_{inj}}{\sqrt{V_{inj}}} \qquad \Delta \phi \approx \frac{B^2}{2e\mu_0 n_b} \propto I_{inj} \sqrt{V_{inj}}$$

- $T_{HeII,\perp} \propto \Delta \phi \propto I_{inj} \sqrt{V_{inj}}$
- $T_{\perp} \gg T_{\parallel}$
- T_i increases with changes in I_{inj} and V_{inj}
- T_{\perp} increases with B_{guide}

T_i Not Obviously Correlated with n=1 Mode, Correlated with High Frequency Turbulence

- Discharges developed with isolated bursts of n = 1 activity, $T_{i,\perp}$ and $T_{i,\parallel}$ measured over burst
- Neither temperature deviates significantly from the average during the burst
- T_i and fluctuation levels above 200 kHz appear correlated
- Continuous ion heating from reconnection between collinear current streams
 - No effect on current drive efficiency
 - Significant ion heating (∼ few 0.1 MW)

Coinciding Burst Phenomena, Frequency Scaling

Injector Impedance Transients Expected with NIMROD Predicted Reconnection Events

- NIMROD simulation predicts helical stream reconnection
 - Ejection of a helical turn
 - Effect on injector impedance likely
- Reduced model of impedance effect:
 - Inductance: sparse helical inductor
 H.W. Grover, Inductance Calculations
 - Transient drop of 1 turn
 - Drop, rebuild in typical burst time: $\Delta t \sim 100 \mu s$
- $dL_{helix}/dt \rightarrow \delta V_{inj} \sim 100 \text{ V}$

Experimental V_{inj} Transients Consistent with Stream-to-Stream Reconnection

- Bursts time with V_{ini} transients:
 - Coincide with n=1 bursts
 - I_p transients as well
- $\delta V_{inj} \sim 100-200 \text{V}$
- Measured V_{inj} transients consistent with reconnection:
 - Loss of helical stream winding

n=1 Frequency is Alfvénic

Injector impedance an indicator of e-beam density:

E.T.Hinson, Phys. Plasmas 23, 052515 (2016)

$$n_b \sim I_{inj}/V_{inj}^{1/2}$$
 \rightarrow $f_A \sim v_A \sim \frac{1}{\sqrt{n_b}} \sim V_{inj}^{1/4}/I_{inj}^{1/2}$

- n=1 frequency scales like Alfvén frequency
 - NIMROD: Alfvén waves along injected current streams

Approximate Null Formation Prior to Large Scale Relaxation Confirmed

- Relaxation occurs soon after null formation in initial low-B_z period
 - Observed in experiment and simulation

 Internal B_z measurements confirm predicted poloidal field null formation

n=1 Burst Activity is Consistent with Injected Helical Stream Dynamics

- LFS LHI plasmas exhibit large, Alfvénic bursts of n=1 activity
 - Radially localized near injectors
 - Poloidal structure consistent with unstable current stream in the edge
 - Toroidally asymmetric amplitude indicates toroidally line-tied to injectors
 - V_{ini} transients are consistent with NIMROD predicted detached current ring
- Anomalous ion heating is evidence of reconnection activity
 - Localized to the injection region
- Open question: how much current drive this mechanism leads to?

