PEGASUS-III: A Spherical Tokamak for Developing Non-Solenoidal Plasma Startup Techniques

J.D. Weberski

M.W. Bongard, S.J. Diem (ORNL), R.J. Fonck, J.A. Goetz, B.A. Kujak-Ford, A.K. Keyhani, B.T. Lewicki, M.D. Nornberg, A.C. Palmer, R. Raman (U. Wash.), J.A. Reusch, A.T. Rhodes, and G.R. Winz

61st Annual Meeting of the APS Division of Plasma Physics Fort Lauderdale, FL

21 October 2019

Solenoid-Free Operation is a Critical Need for ST, and May Benefit Future Tokamak Designs

Minimizing solenoid simplifies tokamak design

- Potential cost reduction
- More space for inboard shielding/blanket
- Reduce PF system requirements
- Lower stresses
- Solenoid-free techniques may offer J(R) control

ST-FNSF, FNSF / Pilot Plant Concept

J.E. Menard, Phil. Trans. R. Soc. A 377, 20170440 (2019)

Several Methods Tested Worldwide, but Independently

Need for dedicated facility

- Predictive understanding
- Sufficient runtime
- Comparative studies
- Exploit possible synergies
- Goal: Establish routine startup tool

PEGASUS HFS LHI

 $I_p \sim N_{turns} \; I_{inj}$

 $I_p \gtrsim N_{turns} I_{inj}$

 $I_p \gg N_{turns} I_{inj}$

RF Startup Experiments

	1- 1	
RF Method	Device	I _p [kA]
ECH + PF	DIII-D	166
induction	JT60-U	100
ЕСН	QUEST	70
	DIII-D	33
	KSTAR	15
ECH + LHCD	T-7	20
EBW	MAST	73
	LATE	15
LH	PLT	100
	TST-2	25
	GLOBUS-M	21

Bongard et al., APS-DPP-CPP Initiative (2019)

NSTX Transient CHI

PEGASUS-III: A Facility Dedicated to Comparative Study of Solenoid-Free Startup and Possible Sustainment

- **Mission**: compare / contrast / combine reactor relevant startup techniques at $I_p \sim 0.3$ MA
 - Goal: guidance for 1 MA startup on NSTX-U, beyond
- Features of PEGASUS-III:
 - New center rod assembly: $B_T = 0.6 T$
 - New power systems
 - Next generation LHI injectors
 - Transient & Sustained CHI (with Univ. Washington, PPPL)
 - EBW RF heating & CD (with ORNL, PPPL)
 - Improved diagnostics

PEGASUS-III

Projecting LHI to Larger Facilities Requires Tests at Increasing B_T

Critical physics issues:

- $-I_p$ gains with increased Taylor limit $\sim \sqrt{I_{TF}}$
- Initial tokamak formation
- Scaling of core confinement
- Current drive mechanisms
- Stochastic edge transport properties
- Current stream stability

0-D Power-Balance Projections for LHI on PEGASUS-III

Advancing LHI Technology with Non-Circular Injector Design in PEGASUS-III

- To date, circular helicity injector development
- Future: non-circular injector concept
 - Increase $A_{ini} \rightarrow$ lower V_{INI} for reduced PMI
 - Narrow current channel (w)
 - Increase I_{inj}
 - Single LFS port assembly
 - Programmable $V_{ini}(t)$ capability

Taylor limit

$$I_p \le I_{TL} \sim \sqrt{I_{TF} I_{inj} / w}$$

Helicity limit

$$I_p \leq V_{LHI}/R_p {\sim} A_{inj} V_{inj}$$

Array of 3 circular injectors installed in PEGASUS

Advanced "Kama" Injector in PEGASUS-III

Increased B_T Enables Comparative Studies of CHI on PEGASUS-III

• CHI system targets $I_p = 0.3$ MA

- No vacuum vessel break
- Segmented, floating refractory metal electrodes

Explore CHI physics at B_T = 0.6 T

- Comparison and synergies w/other methods
- Scenario optimization
- Flux conversion efficiency
- Validation of MHD simulations

Taylor Limit

$$I_p \leq I_{TL} = I_{inj} \Psi/\psi_{inj}$$

"Bubble burst" criterion

$$I_{inj} \ge \frac{C\psi_{inj}^2}{\mu_0^2 d^2 I_{TF}}; C \sim O(1)$$

65 mWb Connecting CHI Electrodes

PEGASUS-III Will Explore EBW Synergies with Helicity Injection, with Potential for Expanded RF Capabilities

EBW for heating and current drive*

- Improve HI startup via electron heating
- Post-HI sustainment

EBW implementation

- Steerable O-mode mirror on LFS
- 8 GHz, 500 kW FTU system

Possible expansion: ECH and ECCD

- Direct RF startup
- Explore proposed NSTX-U startup scenario**

GENRAY EBW Ray-tracing

CQL3D Driven Current Density

PEGASUS-III: Design and Fabrication in Progress

Magnetic field upgrades

- 24-turn TF bundle
- TF return legs accommodate axial stresses
- PEGASUS-like wedge compression TF joint
- New divertor coils

Power supply upgrades

- 300 MVA of digitally controlled power

In-vessel modifications

- LHI and CHI support assemblies
- Upgraded magnetic diagnostics

Parameter	PEGASUS	PEGASUS-III
ψ_{sol} [mWb]	40	0
$B_{T,max}(R_0)$ [T]	0.15	0.58
B_T Flattop [ms]	25	50-100
Α	1.15	1.18

Small Central Rod Assembly Supports Access to Unique Low $A \sim 1$ Tokamak Physics

- Diagnose with insertable probes
- Unique operating regimes
 - High β_t^*
 - Min |B| well configuration*
 - H-mode studies**

^{*}Schlossberg et al., Phys. Rev. Letters 119 035001(2017)

^{*}Reusch et al., Phys. Plasmas 25 056101 (2018)

^{**}Thome et al., Nucl. Fusion 57 022018 (2017)

Evaluation of Leading Techniques for Reactor Relevant Solenoid-Free Startup on PEGASUS-III

- Compare/contrast/combine concepts for solenoid-free startup in a dedicated facility
 - Local Helicity Injection
 - Coaxial Helicity Injection (Transient, Sustained)
 - EBW assist and sustainment
 - Future: EC heating and current drive
- Goal: develop validated concept, equipment for 1 MA startup on NSTX-U and beyond

Construction underway, operational in 2020

PEGASUS-III: US Startup Development Station

Collaborative Enterprise

PEGASUS-III Posters at **Tuesday AM** Session

• A.T. Rhodes [GP10.00125]: Pegasus-III overview

• A.C. Palmer [GP10.00126]: Status of new central rod assembly

• A.K. Keyhani [GP10.00127]: Status of new diagnostic neutral beam

• R. Raman poster [GP10.00128]: Pegasus-III CHI system overview