Non-Solenoidal Tokamak Startup Using High-Field-Side Local Helicity Injection on the Pegasus ST

Grant M. Bodner

M.W. Bongard, R.J. Fonck, C. Pierren, N.J. Richner, C. Rodriguez Sanchez, J.A. Reusch, A. Rhodes, C. Shaefer, and J.D. Weberski

APS-DPP Portland, OR November 9th, 2018

Local Helicity Injection (LHI) Achieved Using Low-Field-Side and High-Field-Side Injectors

- Edge current extracted from injectors
- Relaxation to tokamak-like state via helicity-conserving instabilities

Current drive quantified by:

$$V_{LHI} \approx \frac{A_{inj}B_{\varphi,inj}V_{inj}}{\Psi_p}$$

Injector Geometries Emphasize Different Current Drives

Low-Field-Side Injection:

- Injectors on outboard mid-plane
- $High R_{ini} \rightarrow Iow V_{LHI}$
- Dynamic shape → strong V_{IND}

High-Field-Side Injection:

- Injectors in lower divertor
- Low $R_{ini} \rightarrow \text{strong V}_{LHI}$
- Static shape → minimal V_{IND}

Confinement Properties Set the Current Drive Scaling for HFS Injection

 Ohmic and stochastic confinement scalings predict non-linear I_p-V_{LHI} relationships

$$V_{LHI} = I_p R_p \to T_e^{3/2}$$

- Experiment shows I_p proportional to V_{LHI}
 - Suggests fixed $\langle \eta \rangle$
- However, may not be fully representative
 - Experiment conducted at low $B_t \sim 0.045 \text{ T}$
 - Short I_p flat top
 - n_e was not controlled

T_e Profile Structure Suggests Varying Degrees of Current Stream Structure in the Plasma Edge

- In LFS discharges, profile structure depends on attachment of plasma to the injectors
 - Peaked when attached
 - Hollow when detached
- In HFS discharges, profile structure depends upon the level of B_t
 - Peaked at max B_t
 - Hollow at reduced B_t

Operation at Max B_t is Critical to Scale LHI to Larger Facilities

HFS injection more difficult at max B_t

 Increased B_t causes injector streams to pass closer to the other injector

 Cathode spots are more likely to occur early in the discharge at max B_t

Current streams in an unrelaxed discharge

Cathode spots on the outside of the injector

LFS to HFS Injection Handoff Enables Routine Max B_t Operation

- Additive nature of helicity means HI systems can be combined
- Startup with LFS injection at max B_t
 - Eases relaxation requirements
 - Favorable geometry for divertor injectors
- Handoff to HFS injection when presented with full size plasma
 - Mitigates PMI issues

Proof of principle of the handoff technique

Peaked T_e, n_e, and p_e Profiles During Helicity Driven Phase

 Core T_e increases during the HFS drive phase to > 100 eV

 Trade-off between n_e, T_e, and I_p; can operate at higher n_e but requires more input power

Similar results have been observed with HFS injection-only discharges at max B_t

Abrupt Transition in MHD Behavior During HFS Injection

- Large-amplitude, low freq. in early phase
 - Large scale n=1 at 20-80 kHz
 - Line-tied kink of current streams

- Reduction in low frequency activity later in the discharge
 - Low MHD: up to 50% more I_p
 - Interpreted as kink stabilization
- Mechanisms behind this transition are unclear; under investigation

Time [ms]
Operating Space for ~8,500 HFS LHI Discharges

WISCONSIN MADISON

24

LFS to HFS Handoff Has Allowed For Continued Study of HFS Injection

- HFS injection has been used to create discharges driven purely by helicity injection
- LFS to HFS startup successfully implemented to routinely create high I_p discharges at max B_t
- Peaked T_e, n_e, and p_e profiles observed in purely helicity driven plasmas
- T_e profile suggests varying degrees of current stream thermalization in the plasma edge
- Operating regime with reduced n=1 activity; increased current drive efficiency discovered

