Thomson Scattering measurements During Local Helicity Injection in the Pegasus Toroidal Experiment

G.M. Bodner, M.W. Bongard, R.J. Fonck, J.A. Reusch, C. Rodriguez Sanchez, D.J. Schlossberg

58th Annual APS-DPP Meeting

San Jose, CA

November 2, 2016

Thomson Scattering Diagnostic System Used to Evaluate T_e and n_e During Local Helicity Injection

- Collection of T_e and n_e profiles is a critical plasma measurement
 - Equilibrium/Stability
 - Transport and confinement
- Three spectrometers provide 24 possible spatial locations
- Synchronized and automated system operation
 - Intra-shot beam alignment capability
- T_e and n_e profiles have been collected for multiple injector geometries

Pegasus is a Compact Ultralow-A ST

Experimental Parameters Achieved Parameter

1.15 - 1.3R(m) 0.2 - 0.45≤ .21 I_p (MA) 1.4 - 3.7 ≤ 0.025 $\tau_{\rm shot}(s)$ ≤ 100 β_t (%)

Major research thrusts include:

- Non-inductive startup
- Plasma stability at A~1

Point-Source Helicity Injectors

Confinement During Non-Inductive LHI Startup Critcially Depends on T_e

- Local Helicity Injection (LHI) creates tokamak plasmas with high power edge current injection
- ARC INJECTION ini Beam Drift Space, B≈0.1 T Arc Plasma
- Physics encapsulated in hierarchy of models:
 - 1. Maximum I_p Limits⁽¹⁾:

Taylor Relaxation
$$I_{p} \leq I_{TL} \sim \left(\frac{I_{TF}I_{inj}}{w}\right)^{1/2}$$

2. 0-D Power Balance Model for $I_p(t)$:

$$I_p[V_{LHI}-V_{IR}+V_{IND}]=0 \ ; \ I_p\leq I_{TL}$$

3D Resistive MHD (NIMROD)

T_e dependent terms

0.05

20

25

Time [ms]

Helicity Conservation

(1)D.J. Battaglia, et al. Nucl. Fusion **51** (2011) 073029. N.W. Eidietis, Ph.D. Thesis, UW-Madison, 2007.

35

30

Layout of the Pegasus Thomson Scattering Diagnostic

"Turn-key" 2J Laser Optimized for Operation on Pegasus

- Continuum Powerlite DLS Plus 2J Nd:YAG laser
- Frequency doubled to provide 2J at 532 nm

Specification	Value	Determining factors
Divergence	≤ 0.5 mrad	Desired spatial resolution, component damage thresholds
Pointing stability	≤ 50 µrad	Beam line (~7 m)
Pulse length	~7 ns FWHM	Availability at desired power
Repetition Rate	≤ 10 Hz	Shot duration;
Jitter	≤ 500 ps	Time resolution
Polarization ratio	≥ 90%	Scattering dependence

Laser Alignment Maintained with Remotely Actuated Mirrors and Networked Cameras

Thermal variations, vibrations detune beam alignment

- Two actuated mirrors control laser alignment
 - Position monitored with cameras

- Energy meter measures exit power at end of beam line
 - Acts as beam dump

LabVIEW Image Processing Tools Characterize Beam Alignment

 Two networked ImagingSource CCD cameras capture beam positions through vessel

- Beam spots analyzed to evaluate laser alignment
 - Centroid values compared to fiducial values from Rayleigh calibrations
 - Auto alignment corrects misalignment to within a two pixel difference (~ 0.29 mm)

Multi-Element Collection Lens Supports High Throughput Field of View

Design Criteria:

- Collect 80 cm flat field of view
 - 72 cm from lens
- Resolution sufficient to collect a scattering area ~ 1.5 cm x 0.3 cm

- F# 2.1
- 20.2 cm focal length

80 cm

Magnification ~1/3

Fiber Bundles Image 80 cm Radially Along the Midplane

- Each channel is 0.3 cm x 1.5 cm
- 8 spatial channels per spectrometer
 - 4 data, 4 background channels
 - High and low background channels assist beam alignment

Compact Spectrometer Uses VPH Gratings and ICCD Cameras

ICCD Manufacturer Specifications: Andor iStar 734

Effective Active Area (mm)	13.3 x 13.3	Effective Pixel Size (um)	19.5 x 19.5
Read Noise	≥ 2.9 e-	Active Pixels	1024 x 1024
Spectral Range (nm)	120 - 1090	Photocathode QE (max)	≤ 45%
Minimum Optical Gate Width	≥ 1.2ns	Image Intensifier Gain	> 200

Spectrometer Design Features Interchangeable VPH Gratings for Multiple Temperature Regimes

- Volume-Phase Holographic (VPH) transmission grating
 - Custom made by Kaiser Optical Systems, Inc.
 - Unpolarized diffraction efficiency ~ 80%

Two temperature gratings:

- "High T_e" grating: T_e~100eV-1keV
 - 2072 lines/mm (Core)
- "Low T_e " grating": $T_e \sim 10eV-100eV$
 - 2971 lines/mm (Edge/LHI)

Aperture Assembly Reduces Stray Light by a Factor of 10⁶

- "Critical" apertures
 - Block stray light from vacuum vessel
- "Subcritical" apertures
 - Blocks scattered light from critical apertures
- Baffles
 - Blocks light from subcritical apertures

Based on implementations by: C.J. Barth, et al. Rev. Sci. Instrum. **82, 3380 (1997) J.P. Levesque, et al., Rev Sci. Instrum. **82**, 033501 (2011)

D.J. Schlossberg et al. Journal of Instr. 8 C11019 (2013)

Electronically Gated Collection Window Used to Mitigate Stray Light Reflections

 ICCD collection time scanned with respect to laser

Initial laser pulse, stray light reflections clearly identified

- Use of fast gating enables elimination of stray light
 - Optimum delay determined to be 479 ns with a 16 ns gate width

Spectrometer – SN4076

Spectrometer - SN4077

Wire Grid Polarizers Added to Collection Optics to Minimize Background Plasma Light

- Initial measurements: ~ 13,000 counts from plasma light
- Wire grid polarizers used to filter unpolarized background light
 - Scattered light maintains incident polarization
 - Polarizers have 90% transmission

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5510

High Speed Shutters Minimize Detector Exposure to Intense Plasma Background

- Shutter temporally aligned using photodiode
- Infrared light gates monitor shutter on each shot

Light Gate

High Speed Shutters Decrease Leakage Through the Image Intensifier

Improved SNR

Lower background without impacting scattered signal

- Further investigation of background signal in progress to remove small residual signal
 - Initial observations point to wall reflections

Background Signal Reduction Efforts have Eliminated the Need for Co-Located Background Subtraction

- Average relative error, σ_T/T , is ~ 10% with background subtraction analysis
- Average relative difference between background subtraction and no background subtraction cases is ~ 13.5 %
 - Data channels during laser-off shots can be used as substitutes for background channels

No Background Subtraction

Co-Located Background Subtraction

Fiber Mount to View Full Plasma Radius in Design Stage

- Without a demand for off laser channels, more channels can be dedicated to viewing scattered signal
- High reproducibility of Pegasus discharges allow laser-off shots to be used in background subtraction analysis
- Provides simultaneous measurement of up to 24 data channels
 - 34 possible viewing locations
- Previous fiber arrangement required moving fiducial mounts which required invessel calibrations.

Modified Configuration*

*Figure shows 8 of 24 total fiber channels

Improvements to the Pegasus Thomson System have Enabled Measurements of T_e and n_e Profiles

- Stray light and background light mitigation systems have increased SNR, yielding reliable T_e and n_e measurements
- Local Helicity Injection (LHI) sustains ~100 eV T_{e,max}, moderately high n_e
- No strong T_e(R_{maj}) dependence on LHI location and ratio of LHI-toinductive drive
- Effective startup target for direct OH coupling
- Initial results motivate a transition to a full 24-data channel fiber array

LFS Local Helicity Injection Produces Core $T_e > 100 \text{ eV}$

- Plasma position & shape evolve inward
 - Shape evolution generates V_{IND}
 - V_{IND} > V_{LHI} during high-I_p phase
- Peaked T_e(R) during drive phase (connected)
 - After disconnect radial compression drives skin current
- Core $n_e > 10^{19} \text{ m}^{-3}$, $T_e \ge 100 \text{ eV}$ provides target for subsequent CD

T_e (R_{mai},t) Remains Peaked for LFS LHI with V_{IND} Small

100

- Same injection location but static, circular plasmas at large R_{mai}
 - Lower performance due to shape constraints

• $V_{IND} = 0$, $T_e(0) \sim 80 \text{ eV}$

 T_e(R) remains peaked while driven solely by edge LHI

 $T_e(R) > 85$ eV with majority LHI-drive 150 23.03 ms 28.03 ms

Divertor Injection at low TF Provides Non-Solenoidal Sustainment at High I_N

- HFS LHI development campaign provides unique operation space
 - dLow $I_{TF} \sim 0.6 I_p$
 - $-I_N = 5A \frac{I_p}{I_{TF}} > 10$ accessible
- Enables high β_t access
 - Aided by anomalous ion heating
- Kinetic constraints on magnetic equilibrium fits
 - $-P_{tot}(0)$
 - Edge location defined by T_e profiles

Reprints

Reprints of this and other PEGASUS presentations are available online at http://pegasus.ep.wisc.edu/Technical_Reports or via email gbodner@wisc.edu

Work supported by US DOE Grant DE-FG02-96ER54375

G.M. Bodner, APS-DPP, San Jose, CA, Oct. 31st - Nov. 4th, 2016

