

G.D. Garstka for the Pegasus Team:

D.J. Battaglia, M.W. Bongard, N.W. Eidietis, R.J. Fonck,

M.J. Frost, S.M. Gillin, B.A. Kujak-Ford, B.T. Lewicki,

M.B. McGarry, B.J. Squires, E.A. Unterberg, G.R. Winz

University of Wisconsin, Madison, Wisconsin, USA

Presented at the 12th ISTW, Chengdu October 11, 2006

Overview

- Plasma washer gun sources installed in lower divertor region
- In certain conditions, ST-like plasmas are formed
 - driven by helicity injection
- Plasmas with high I_p/I_{tf} produced

$$-I_p/I_{tf} = 2$$

$$-I_{N} = 12$$

 Guns used for seed plasma for PF induction experiments

Exploration of A →1 regime limited by current drive considerations

- Shortage of ohmic current drive: longstanding ST issue
 - Especially problematic in Pegasus
- Experimental focus: explore high I_N , high β_t space
 - External kink stability should diverge from standard tokamak as $A \rightarrow 1$
 - Very high stable β_t should be accessible at high I_N
 - Limited CD makes high I_N difficult to achieve
 - Center column: 11 cm diameter
- Plasma gun helicity injection fits into Pegasus program
 - Provides ready access to high I_N without OH
 - Assists OH operations at low field
 - Possible candidate for noninductive current drive tool in future

Pegasus is a mid-sized, ultra-low A ST

Biased electrodes can be used as helicity sources

- This technique can form tokamak-like plasmas
 - Demonstrated on CDX and CCT
- Helicity injection rate, assuming constant B across electrode area:

$$\dot{K}_{Inj} = 2 \int_{A} \Phi \mathbf{B} \cdot d\mathbf{a} = 2 V_{Inj} B_n A_{Inj}$$

where

 V_{Inj} = Bias potential applied to electrode

 B_n = Magnetic field normal to electrode surface

$$A_{Inj}$$
 = Electrode area

- Plasma guns have advantages as helicity injection technique
 - Low impurity content
 - Scalable to larger size
 - Controllable by current feedback
 - Integratable into existing Pegasus facility
 - Significant power per device (1-2 MW)

Gun construction

- Mo anode & cathode separated by Mo & BN washers
- D₂ fed independently via dual gas/cathode line
- BN housing
- Relatively clean plasma source
 - Internal arc formed
 - Anode of arc is cathode of electron source
 - Small aperture area
- Typical parameters:

$$- I_{arc} = 1-2 \text{ kA}$$

$$- I_{inj} = 1-2 \text{ kA}$$

$$- V_{inj} < 900 V$$

- $\delta t_{arc} = 0.01 \text{ s (set by heating)}$

Gun photos

Relaxed plasmas can be formed

- At low I_{Ini} and/or high pitch angle, helical current filaments form
 - $M = I_p/I_{inj}$ = Geometric stacking
- Filaments merge into cylindrical sheet as I_{Ini} increased, pitch decreased
 - M > Geometric stacking
- At low fields ($B_{\phi} \approx 0.01 \text{ T}$, $B_{\theta} \approx 0.005 \text{ T}$), tokamak-like relaxation occurs
 - M >> Geometric stacking

Pegasus Toroidal Experiment University of Wisconsin-Madison

Formation of tokamak-like plasma

ST plasma formation requires satisfaction of multiple constraints

- Magnetic considerations
 - Flux closure: Vacuum field < plasma poloidal field
 - Radial equilibrium: Vacuum field must match relaxed I_p
 - Gun Geometry: Initial field windup must clear guns
 - $2\pi R(B_{\nu}B_{t}) > N_{gun}\delta_{gun}$
- Conservation considerations
 - Helicity conservation
 - No flux conserver
 - For steady-state: $I_p = V_{bias} A_{inj} / 2\pi R \eta$
 - Power balance
 - $P_{inj} = V_{bias}I_{bias}$
- Net result: for 1-2 injectors, $I_p \le 50$ kA and $B_t (0.4 \text{ m}) \le 0.01 \text{ T}$

Independent measurements confirm formation of closed flux-surface plasmas

- Rapid increase in plasma current
- Reversal of core flux
- Increased plasma L/R decay time
- Appearance of n=1 MHD mode
- Increased core heating observed in VUV and SXR
- Consistency of vertical field with tokamak radial force balance

Central flux reverses sign and plasma decay time increases

- Flux-reversed plasma observed during low field injection
 - > 4x flux reversal
 - Necessary for tokamak formation
- I_₀ increase > 50 %
 - Increased current drive efficiency
 - Maximum observed $I_{\phi} < 50 \text{ kA}$
- $\tau_{\text{\tiny Decay}}$ increase > 400 %
 - Decay w/o reversal $\approx 160 \ \mu s$ w/ reversal $> 700 \ \mu s$
 - Significant change in L/R

n=1 mode observed

- 20-60 kHz n=1 mode observed soon after flux reversal
- Understood to be crucial to CHI current drive
- Dynamo action of n=1 line-tied kink believed to provide loop voltage for closed-flux current drive
- Higher order modes (n=2,3) also observed
 - At the time of flux reversal
 - Later in the discharge (> 1 skin time)

Tokamak-like plasmas exhibit evidence of heating

•O-V (114 eV) to O-IV (77eV) line ratio indicates increased T_e - Te > 50 eV

- •SXR array indicates formation of hot core
 - -Emission peaks at midplane
 - -Midplane signals decay slower at shut-off

Radial force balance satisfied

- Sample case: 30 kA, R=0.4 m
 - B_v required by standard expression:
 - $\ell_i = 0.5$: 0.0072 T
 - $\ell_i = 0.0 : 0.0054 T$
 - Applied vacuum B_v: 0.005 T
 - Fair agreement
- Equilibria have been reconstructed
 - Vertically asymmetric
 - Difficulties of reconstruction:
 - Open field-line currents
 - Non axisymmetric currents near gun

Sample Equilibrium Reconstruction

- I_p : 46.9 kA
- \dot{R}_0 : 0.35 m
- q₉₉: 8.0

- ℓ_i : 0.22
- Z_0 : 0.2 m
- β_t : 11.4%

Large values of I_N achieved at very low toroidal field

- \bullet Ohmic plasmas have been limited to $\rm I_p < I_{tf}$
 - Due primarily to low-order tearing modes
- Gun plasmas routinely produce $I_p/I_{tf} \sim 2 (I_N \le 12)$
 - $-B_t < 60 \text{ Gauss}$
 - Low frequency tearing modes not observed

High I_N in ohmic plasmas produced with gun preionization

- Sheet gun plasma → preionization at low B_t
 - $-0.02 T < B_t < 0.04 T$
 - No resonant surface for ECH PI
- $I_p/I_{tf} = 1.5$ achieved using this technique
 - With low power OH system $(V_{loop} < 4 \text{ V})$
- Tearing modes observed as I_p increases
 - $I_p = I_{tf}$ not intrinsic limit
- Future experiments: repeat at higher power
 - Increased gun power
 - Full OH system now operational

Guns have greatly expanded I_p/I_{tf} operating space

- $I_p/I_{tf} > 2$ achieved at low TF
 - No external kink
 - Tearing modes only with OH
- Helicity injection vs OH ⇒ fundamentally different CD mechanisms
 - OH CD at low η
 - HI: CD at edge
- Substantial J(r) modification
 - Broad/hollow profile
 - q possibly reverse shear
- Guns provide possible tool to routinely access high I_N via J(r) modification

Gun-OH handoff shows signs of heating

- Low V_{loop} added to end of gun discharges
 - Modest increase in I_p
 - Prototype guns: limited to very low TF
- SXR emission increases with V_{loop}
- Want full handoff: guns → OH
 - low field \Rightarrow poor confinement
- input power mismatch:
 - guns: 2 MW
 - OH: 80 kW
- Approach: increase gun helicity & power
 - allows higher field ops
 - better matching of applied field to equilibrium field
 - added flux, V_{loop} from full power OH

New poloidal field induction experiments assisted by midplane gun

Anode ("collector plate")

Detail: Top View

Port

PF induction: the movie

20 ms: Toroidal current starts

20.8 ms: Gas puff

23 ms: Plasma fades

26.7 ms: Induction begins

28 ms: Plasma fades

Midplane gun assists PF induction

Future plans

- Study plasmas with high I_N , β_t
 - Install upgraded high-current guns
 - Array of guns for $I_p > 0.1$ MA (~ 10 MW system)
 - Redesign to minimize nitrogen production
 - Couple high-power guns to full-power OH system
 - Preionization vs fully relaxed gun plasmas
 - Study effects of J(r) modification on MHD stability
 - Implement upgraded midplane gun system (imminent)
 - Multi-turn gun/collector system
 - Designed to produce 5-10 kA relaxed plasma as target for induction
- Study physics of discrete-helicity-source current drive
 - Aided by installation of high-power gun array
 - Helicity & power scalings
 - Current profile measurements
 - Detailed mode activity studies

Summary

- Relaxed, ST-like plasmas (I_p < 50 kA) produced via helicity injection using arrays of discrete washer gun sources
 - Sources are clean but small
 - $T_{e,0} > 50 \text{ eV}$
- Plasmas with $I_N \sim 12 (I_p/I_{tf} \sim 2)$ produced with this technique
 - Kink and tearing mode stable
 - Suppression of tearing modes via J(r) manipulation
 - Good technique for reliably accessing high I_N
- PF induction experiments conducted using gun source
 - Initial target plasma 1-2 kA
 - Induction produced $I_p \sim 18 \text{ kA}$

SUPPORTING MATERIAL

Plasma arc is formed inside the gun

- After gas puff, PFN initiates
 - ≈ 10 ms arc
 - -Thermal limits on duration
- •I_{Arc} determined by V_{PFN}

$$-I_{Arc} \approx 1 \text{ kA}, V_{PFN} = 0.7 \text{ kV (Old)}$$

$$-I_{Arc} \approx 2 \text{ kA}, V_{PFN} = 1.4 \text{ kV (New)}$$

•PFN regulates V_{Arc} to maintain flat current evolution

University of Wisconsin-Madisor

Gun biased independently of arc

- Switched H-bridge biases anode negatively wrt vessel
 - Extracts electrons
 - Ionizes plasma
- Impurity ions trapped in aperture
 - Clean source
- •PWM current-feedback control to maintain $I_{inj} \le I_{Arc}$
- LC filter smoothes switching

Phenomenological Trends of I₀

- $^{\bullet}I_{\varphi}$ transition from non-linear to offset-linear response to both P_{lni} and
- Transition corresponds to transition from non-reversed to marginally reversed to fully relaxed plasmas
- •Only response to B_V approximates 0-intercept

Characteristics of Fiducial Tokamak-like Gun Discharge

- $\cdot I_{\scriptscriptstyle \phi} > 50 \text{ kA attained}$
- $\bullet I_{lnj} \approx 4 \text{ kA}, P_{lnj} < 3 \text{ MW}$
- •Roughly constant –Calculated assuming $B_n = B_{\phi}$
- •Deep flux reversal (> 3x)

Impurity Spectra

Consistent with Helicity Conservation

- Is measured Ip consistent with helicity input?
- Assuming:
 - 1) R = 40 cm, a = 35 cm (inferred from images)
 - 2) η Spitzer
 - 3) Zeff = 2
 - 4) Uniform J
 - 5) $B_{\phi} = 0.01 \text{ T}$
 - 6) Injected dK/dt $\approx 4 \times 10^{-3}$ Wb2/s (calculated from experimental data)

Ip = 25-35 kA is consistent with Te = 50-70 eV

- Given SXR and spectral data, 50-70 eV reasonable estimate
 - · More quantitative analysis planned

Helicity conservation in general agreement with observed plasmas

Transition of sheet plasma to relaxed closed flux-surface plasma

- B_V reduced to allow flux reversal
 - B_{ϕ} reduced to maintain pitch
- As reversal approached,
 I_Φ proportional to B_V
- I_{ϕ} regulation maintains near-reversal over large B_V variation
- Reversal at B_V ≈ 20-30 gs matches expectation
 - Simple elliptical model: 3 gs / kA
- · Behavior changes once reversal appears
 - I_{ϕ} not proportional to B_{V}
 - Poloidal structure changes dramatically
- Narrow optimal operating space
 - Very sensitive to fields, background gas

