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Abstract

Several MHD instabilities have been observed on the PEGASUS

Toroidal Experiment.  A m/n=2/1 resistive mode is observed in

nearly all discharges. The appearance of this mode is correlated with

a large volume of the plasma at low magnetic shear near the q=2

surface. This mode has a fundamental frequency between 3 and 10

kHz and is highly toroidal, with 1.5 of 2 wavelengths detected along

the center column.  More recent discharges exhibit a 3/2 mode which

is observed to destabilize a 2/1 island.  Evidence of external kink

modes at q95=5 has been detected. Standard MHD diagnostics are

employed for mode detection and identification. Four arrays of

Mirnov coils are available: a 7-coil inboard and 6-coil outboard

toroidal array, a full poloidal array of 22 coils, and a 21-coil center-

stack poloidal array. An 18-channel poloidal soft X-ray array

provides data on internal fluctuations.
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Outline - MHD Activity on PEGASUS

• Mirnov Coils
- Construction, calibration, and installation

• Observations of 2/1 magnetic island
- Mode structure, correlation with q profile

• Observations of 3/2 and 2/1 islands
- Mode structure, coupling, effect on plasma performance

• Indications of external kink
- Experimental measurements, equilibria, calculations

• Soft X-ray array
- Hardware, correlation with magnetics diagnostics
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Questions to be addressed

• What resistive, macroscopic MHD instabilities are observed
  at near-unity aspect ratio?

- Are magnetic islands present?
- What mode numbers?

• What is the character of these instabilities?
- How virulent?
- What is the poloidal structure?
- What relationship do the modes have to each other?

• Do these instabilities significantly limit plasma performance?

• Are any ideal MHD limits evident?
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The small size of the centerstack puts tight
constraints on core diagnostics
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Midplane Cross-Section of Centerstack

 11.0  cm. 

• Less than 0.5 cm available for
  diagnostic radial extent

• Properties of Mirnovs and Rogowskis:
- 2.5 mm thick form
- 90 micron wire

• Size restrictions also limit twisted-pair
  sizes and core cable runs
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Schematic layout of Mirnov coils

Poloidal Mirnov Coils (22)
LFS Toroidal Mirnov Coils (6)
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Physical construction of coils

• PEGASUS Mirnov coils are divided into three types
• First type is recycled PDX coils - used for LFS poloidal array

- 1 cm x 2.7 cm x 3 cm long
- 0.5 mm wire, 18 turns/cm, double layer
- 330 cm2 effective area

• Second and third types are used for the core arrays
  and external toroidal array

- 1.9 cm x 0.25 cm x (10 cm or 2 cm) long
- 90 micron wire, 60 turns/cm, single layer
- 280 or 55 cm2 effective area
- Core arrays on long strips to facilitate alignment

            of coils on core armor

Low-Res array installed on core armor

Single Coil from HFS toroidal array
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Mirnov coils give flat response below 100 kHz

• All coils calibrated on same Helmholtz set

• Typically frequencies of 10 kHz or less
  are observed on PEGASUS

• Coil resonances are observed at frequencies
  above 100 kHz

• Coils also function as equilibrium diagnostics
  (B coils)
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(PDX)
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Toroidal mode numbers are readily identified

• The 6-coil LFS array is used to obtain
   values of n

- Uneven coil spacing allows for resolution
  up to n=12

• Spectral techniques are used to
  extract resonant frequencies and
  phase delays

- Cross-power gives spectrum
- Cross-phase gives phase shift
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• Mode present in all significant discharges

• Rotates in electron diamagnetic direction
- Mode is likely magnetic island

• Frequency is typically 4-10 kHz
- No evidence of mode locking

• Little shear stabilization of island growth
- Central shear is nearly zero

A dominant feature has been a rotating m/n=2/1 mode
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2/1 mode is poloidally asymmetric

= 2 Gauss
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2/1 Poloidal Phase at the Wall

• Poloidal and toroidal phase analyses clearly indicate mode is m=2/n=1

• Toroidicity of mode is seen in large phase shifts along centerstack
- Roughly 1.5 wavelengths observed across 120º poloidally

• Mode is strongest on the low-field side
- As plasma grows, LFS signal increases and HFS signal decreases
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Mode asymmetry demonstrated by
magnetic perturbation at coils

• Polar plot shows displacement of B from zero
- Contains phase and amplitude information
- Plots based on spectral analysis, not raw data

• This is an example of a 2/1 mode
- Note two “positive” lobes and two “negative” lobes in each plot

• Efforts underway to model Mirnov coil signals
- Helically perturb equilibrium with desired m,n
- Place parallel current on magnetic island
- Calculate resulting perturbed field with real coil geometry 
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2/1 mode not observed until qmin < 2
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• Consistent with observed helicity of the mode
• A large region of low shear exists about
  the q=2 surface
• Central q inferred from Equilibrium fit

- 2D SXR camera will constrain q0

- See Tritz et al. [RP1.036]
• In general, strong MHD activity appears to
  relate to Ip limits
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Higher-current discharges exhibit
a greater variety of MHD activity

2/1

3/2

2/1

• Recent operations scenarios
  produce plasmas with
  Ip ∼ 150 kA

- Improved plasma control
- Improved conditioning

• 2/1 mode is observed but disappears
- Is this the reason for improved
  performance?

• A 3/2 mode appears after a
  quiescent period

• Appearance of 3/2 mode is
  correlated with q0 dropping
  below 1.5 
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An m/n=3/2 mode arises as Ip increases over 130 kA

• Mode is observed in essentially all discharges over roughly 130 kA

• Toroidal structure (n=2) is clearly and unambiguously present

• Poloidal mode structure is more circular than 2/1
- 3/2 island deeper in the core than 2/1
- Poloidal reconstruction is less robust than 2/1 case
- Some up/down asymmetry is observed 

Illustration of Mode at Coils
Poloidal and Toroidal Mode Structure
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A 2/1 mode is destabilized after the 3/2 mode appears

• 3/2 mode appears after a quiescent
  period following the end of the 2/1 mode

- li and Ip rise in this period

• Frequency of 3/2 mode typically
  increases throughout its lifetime

• 2/1 island re-appears after 3/2
  mode begins

- Delay is 1-3 ms
- 2 modes are discernible in
  the raw data

• Why does 2/1 become destabilized?
- Profile modification due to 3/2?
- Mode coupling with an
  unobserved 1/1 mode?

• Can these modes be stabilized by
  optimizing the run scenario?
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MHD activity appears to limit plasma performance
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High MHD Shot Low MHD Shot • Reduction in MHD typically results
  in improved plasma performance

• In “High MHD” Case:
- li stays low (0.3)
- Stored energy stays < 100 J
- Ejima coefficient > 0.8

• In “Low MHD” Case:
- li climbs higher (despite higher Vloop)
- Stored energy climbs to 600J
- Ejima coefficient ~ 0.4

• Reduction of 2/1 mode was
  important for improved plasma
  performance

• Further studies are planned to
  elucidate relative roles of MHD
  and flux consumption on startup
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Fluctuations are observed on coils prior to disruption
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• Higher-current discharges (150 kA class)
  often terminate in abrupt disruptions

- Lower-current shots have IREs
  followed by gradual plasma termination

• Fluctuations are observed on Mirnov coils
  immediately prior to disruption

- Dominant frequency is order of 10 kHz
- Mode is observed a few 100 µs before IRE

• These fluctuations are not observed in
  lower-current shots
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Data and calculations indicate external kink modes

• Observed disruptions are associated
  with edge kink limits

- Oscillations not observed until
  q95 Å 5

• Calculated free-boundary
  energy approaches zero as
  oscillations begin

- Negative value indicates instability
  to external kink
- Calculations made with DCON
  and VACUUM

• Consistent with theoretical
  understanding of ideal kink stability
  at near-unity A

- As A→1, stable qa increases
- Does finite β play a role?

• Mode grows on a hybrid time scale
  between τA and q(dq/dt)-1

- Roughly as expected for a plasma
  slowly crossing instability boundary
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Poloidal soft X-ray diagnostic will aid MHD diagnosis

0m

• 18-channel array
- Originally from S-1 spheromak
- Vacuum can modified for PEGASUS

• Standard detector technology
- Reverse-biased SiLi diodes
- 2-stage amplifiers

• Metal foil filters placed on each diode
- Shielded from Ti gettering

• Full array will be made operational
  later this year
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SXR array observes 2/1 mode

• SXR array was tested using a
  single central channel

• Diagnostic observes bulk plasma signal

• Also observes fluctuations associated
  with 2/1 magnetic island

- Fluctuations on the order of
  dS/S=10-20%
- Clear phase relationship with
  outboard Mirnov coil
- Phase between island O-point
  and peak of X-ray emission is
  as expected 
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Summary of MHD activity on PEGASUS

• Large magnetic islands are observed
- 2/1 mode seen in all high-power shots
- 3/2 mode observed in 150 kA class shots
- Mode helicities consistent with qmin < m/n
- 3/2 mode associated with destabilization of 2/1
- Soft X-ray array will provide details of internal structure

• These islands appear to degrade plasma performance
- More quiescent plasmas exhibit lower CE
- Discharge tailoring can reduce effects of modes

• Disruptions in higher-power plasmas are associated
  with external kinks

- Equilibria suggest q=5 is culpable surface
- Rapidly-growing oscillation observed immediately prior to disruption
- DCON and VACUUM predict instability at correct time


