MHD Activity and Analysis at Near-Unity Aspect Ratio in Pegasus

G.D. Garstka, S.J. Diem, R.J. Fonck, A.C. Sontag, T.A. Thorson, K.L. Tritz, E.A. Unterberg

University of Wisconsin-Madison

Presented at the 43rd Annual Meeting of the APS Division of Plasma Physics

November 1, 2001

Long Beach, California, USA

Abstract

Several MHD instabilities have been observed on the PEGASUS Toroidal Experiment. A m/n=2/1 resistive mode is observed in nearly all discharges. The appearance of this mode is correlated with a large volume of the plasma at low magnetic shear near the q=2surface. This mode has a fundamental frequency between 3 and 10 kHz and is highly toroidal, with 1.5 of 2 wavelengths detected along the center column. More recent discharges exhibit a 3/2 mode which is observed to destabilize a 2/1 island. Evidence of external kink modes at q₉₅=5 has been detected. Standard MHD diagnostics are employed for mode detection and identification. Four arrays of Mirnov coils are available: a 7-coil inboard and 6-coil outboard toroidal array, a full poloidal array of 22 coils, and a 21-coil centerstack poloidal array. An 18-channel poloidal soft X-ray array provides data on internal fluctuations.

Outline - MHD Activity on Pegasus

- Mirnov Coils
 - Construction, calibration, and installation
- Observations of 2/1 magnetic island
 - Mode structure, correlation with q profile
- Observations of 3/2 and 2/1 islands
 - Mode structure, coupling, effect on plasma performance
- Indications of external kink
 - Experimental measurements, equilibria, calculations
- Soft X-ray array
 - Hardware, correlation with magnetics diagnostics

Questions to be addressed

- What resistive, macroscopic MHD instabilities are observed at near-unity aspect ratio?
 - Are magnetic islands present?
 - What mode numbers?
- What is the character of these instabilities?
 - How virulent?
 - What is the poloidal structure?
 - What relationship do the modes have to each other?
- Do these instabilities significantly limit plasma performance?
- Are any ideal MHD limits evident?

The small size of the centerstack puts tight constraints on core diagnostics

Mirnov Coil

Rogowski Coil

Diamagnetic Loop

- Less than 0.5 cm available for diagnostic radial extent
- Properties of Mirnovs and Rogowskis:
 - 2.5 mm thick form
 - 90 micron wire
- Size restrictions also limit twisted-pair sizes and core cable runs

Schematic layout of Mirnov coils

- "High-Res" Core Mirnov Coils (21)
- Poloidal Mirnov Coils (22)

- LFS Toroidal Mirnov Coils (6)
- HFS Toroidal Mirnov Coils (7)

Physical construction of coils

- Pegasus Mirnov coils are divided into three types
- First type is recycled PDX coils used for LFS poloidal array
 - 1 cm x 2.7 cm x 3 cm long
 - 0.5 mm wire, 18 turns/cm, double layer
 - 330 cm^2 effective area
- Second and third types are used for the core arrays and external toroidal array
 - 1.9 cm x 0.25 cm x (10 cm or 2 cm) long
 - 90 micron wire, 60 turns/cm, single layer
 - $280 \text{ or } 55 \text{ cm}^2$ effective area
 - Core arrays on long strips to facilitate alignment of coils on core armor

Single Coil from HFS toroidal array

Low-Res array installed on core armor

Mirnov coils give flat response below 100 kHz

- All coils calibrated on same Helmholtz set
- Typically frequencies of 10 kHz or less are observed on Pegasus
- Coil resonances are observed at frequencies above 100 kHz
- Coils also function as equilibrium diagnostics (B coils)

Toroidal mode numbers are readily identified

- The 6-coil LFS array is used to obtain values of n
 - Uneven coil spacing allows for resolution up to n=12
- Spectral techniques are used to extract resonant frequencies and phase delays
 - Cross-power gives spectrum
 - Cross-phase gives phase shift

A dominant feature has been a rotating m/n=2/1 mode

- Mode present in all significant discharges
- Rotates in electron diamagnetic direction
 Mode is likely magnetic island
- Frequency is typically 4-10 kHz
 No evidence of mode locking
- Little shear stabilization of island growth
 Central shear is nearly zero

2/1 mode is poloidally asymmetric

- Poloidal and toroidal phase analyses clearly indicate mode is m=2/n=1
- Toroidicity of mode is seen in large phase shifts along centerstack
 - Roughly 1.5 wavelengths observed across 120° poloidally
- Mode is strongest on the low-field side
 - As plasma grows, LFS signal increases and HFS signal decreases

Perturbed Field Magnitude at the Wall

Mode asymmetry demonstrated by magnetic perturbation at coils

- Polar plot shows displacement of B from zero
 - Contains phase and amplitude information
 - Plots based on spectral analysis, not raw data
- This is an example of a 2/1 mode
 - Note two "positive" lobes and two "negative" lobes in each plot
- Efforts underway to model Mirnov coil signals
 - Helically perturb equilibrium with desired m,n
 - Place parallel current on magnetic island
 - Calculate resulting perturbed field with real coil geometry

2/1 mode not observed until $q_{min} < 2$

- Consistent with observed helicity of the mode
- A large region of low shear exists about the q=2 surface
- Central q inferred from Equilibrium fit
 - 2D SXR camera will constrain q₀
 - See Tritz et al. [RP1.036]
- In general, strong MHD activity appears to relate to I_p limits

Higher-current discharges exhibit a greater variety of MHD activity

- Recent operations scenarios produce plasmas with Ip 150 kA
 - Improved plasma control
 - Improved conditioning
- 2/1 mode is observed but disappears
 - Is this the reason for improved performance?
- A 3/2 mode appears after a quiescent period
- Appearance of 3/2 mode is correlated with q₀ dropping below 1.5

An m/n=3/2 mode arises as I_D increases over 130 kA

- Mode is observed in essentially all discharges over roughly 130 kA
- Toroidal structure (n=2) is clearly and unambiguously present
- Poloidal mode structure is more circular than 2/1
 - 3/2 island deeper in the core than 2/1
 - Poloidal reconstruction is less robust than 2/1 case
 - Some up/down asymmetry is observed

A 2/1 mode is destabilized after the 3/2 mode appears

- 3/2 mode appears after a quiescent period following the end of the 2/1 mode
 - l_i and I_p rise in this period
- Frequency of 3/2 mode typically increases throughout its lifetime
- 2/1 island re-appears after 3/2 mode begins
 - Delay is 1-3 ms
 - 2 modes are discernible in the raw data
- Why does 2/1 become destabilized?
 - Profile modification due to 3/2?
 - Mode coupling with an unobserved 1/1 mode?
- Can these modes be stabilized by optimizing the run scenario?

MHD activity appears to limit plasma performance

- Reduction in MHD typically results in improved plasma performance
- In "High MHD" Case:
 - l_i stays low (0.3)
 - Stored energy stays < 100 J
 - Ejima coefficient > 0.8
- In "Low MHD" Case:
 - l_i climbs higher (despite higher V_{loop})
 - Stored energy climbs to 600J
 - Ejima coefficient ~ 0.4
- Reduction of 2/1 mode was important for improved plasma performance
- Further studies are planned to elucidate relative roles of MHD and flux consumption on startup

Fluctuations are observed on coils prior to disruption

- Higher-current discharges (150 kA class) often terminate in abrupt disruptions
 - Lower-current shots have IREs followed by gradual plasma termination
- Fluctuations are observed on Mirnov coils immediately prior to disruption
 - Dominant frequency is order of 10 kHz
 - Mode is observed a few 100 µs before IRE
- These fluctuations are not observed in lower-current shots

Data and calculations indicate external kink modes

- Observed disruptions are associated with edge kink limits
 - Oscillations not observed until q95 5
- Calculated free-boundary energy approaches zero as oscillations begin
 - Negative value indicates instability to external kink
 - Calculations made with DCON and VACUUM
- Consistent with theoretical understanding of ideal kink stability at near-unity A
 - As A 1, stable q a increases
 - Does finite play a role?
- Mode grows on a hybrid time scale between A and q(dq/dt)-1
 - Roughly as expected for a plasma slowly crossing instability boundary

Poloidal soft X-ray diagnostic will aid MHD diagnosis

- 18-channel array
 - Originally from S-1 spheromak
 - Vacuum can modified for PEGASUS
- Standard detector technology
 - Reverse-biased SiLi diodes
 - 2-stage amplifiers
- Metal foil filters placed on each diode
 - Shielded from Ti gettering
- Full array will be made operational later this year

SXR array observes 2/1 mode

- SXR array was tested using a single central channel
- Diagnostic observes bulk plasma signal
- Also observes fluctuations associated with 2/1 magnetic island
 - Fluctuations on the order of dS/S=10-20%
 - Clear phase relationship with outboard Mirnov coil
 - Phase between island O-point and peak of X-ray emission is as expected

Summary of MHD activity on Pegasus

- Large magnetic islands are observed
 - 2/1 mode seen in all high-power shots
 - 3/2 mode observed in 150 kA class shots
 - Mode helicities consistent with $q_{min} < m/n$
 - 3/2 mode associated with destabilization of 2/1
 - Soft X-ray array will provide details of internal structure
- These islands appear to degrade plasma performance
 - More quiescent plasmas exhibit lower C_E
 - Discharge tailoring can reduce effects of modes
- Disruptions in higher-power plasmas are associated with external kinks
 - Equilibria suggest q=5 is culpable surface
 - Rapidly-growing oscillation observed immediately prior to disruption
 - DCON and VACUUM predict instability at correct time