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Abstract

Severa MHD instabilities have been observed on the PEGAsus
Toroidal Experiment. A m/n=2/1 resistive mode is observed in
nearly all discharges. The appearance of this mode is correlated with
alarge volume of the plasma at low magnetic shear near the g=2
surface. This mode has a fundamental frequency between 3 and 10
kHz and is highly toroidal, with 1.5 of 2 wavelengths detected along
the center column. More recent discharges exhibit a 3/2 mode which
IS observed to destabilize a2/1 island. Evidence of external kink
modes at qg5=5 has been detected. Standard MHD diagnostics are
employed for mode detection and identification. Four arrays of
Mirnov coils are available: a 7-coil inboard and 6-coil outboard
toroidal array, afull poloidal array of 22 coils, and a 21-coil center-
stack poloidal array. An 18-channel poloidal soft X-ray array
provides data on internal fluctuations.
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Outline - MHD Activity on PEGASUS

 Mirnov Colls
- Construction, calibration, and installation

» Observations of 2/1 magnetic island
- Mode structure, correlation with g profile

» Observations of 3/2 and 2/1 islands
- Mode structure, coupling, effect on plasma performance

e Indications of external kink
- Experimental measurements, equilibria, calculations

« Soft X-ray array

- Hardware, correlation with magnetics diagnostics
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Questions to be addressed

* What resistive, macroscopic MHD instabilities are observed
at near-unity aspect ratio?

- Are magnetic islands present?
- What mode numbers?

 What is the character of these instabilities?

- How virulent?
- What isthe poloidal structure?
- What relationship do the modes have to each other?

* Do these instabilities significantly limit plasma performance?

e Are any ideal MHD limits evident?
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The small size of the centerstack puts tight
constraints on core diagnostics

Twisted
Pairs Core

Armor s Mirnov Coill
R Rogowski Coill

o Diamagnetic Loop

Ohmic Solenoid _
+ » L ess than 0.5 cm available for

TF Bundle diagnostic radial extent

+
Cooling * Properties of Mirnovs and Rogowskis:

- 2.5 mm thick form
- 90 micron wire

* Size restrictions also limit twisted-pair
sizes and core cable runs

< 11.0 cm. -

Midplane Cross-Section of Centerstack
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%’ Schematic layout of Mirnov coils

Top View

Side View

FTe

,,,,,,,,,,

¢ “High-Res” Core Mirnov Coils (21) # LFsS Toroidal Mirnov Coils (6)
¢ Poloidal Mirnov Coils (22) | HFS Toroidal Mirnov Coils (7)
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Physical construction of colls

* PEGAsus Mirnov coils are divided into three types
* First type is recycled PDX coils - used for LFS poloidal array

-1lcmx2.7cmx3cmlong
- 0.5 mmwire, 18 turns/cm, double layer

- 330 cm2 effective area

» Second and third types are used for the core arrays
and external toroidal array

-1.9cmx0.25cmx (10 cmor 2 cm) long
- 90 micron wire, 60 turns/cm, single layer

- 280 or 55 cm? effective area
- Core arrays on long strips to facilitate alignment
of coils on core armor

Low-Res ra installed on core armor
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%’ Mirnov colls give flat response below 100 kHz
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» All coils calibrated on same Helmholtz set

» Typically frequencies of 10 kHz or less
are observed on PeGAsus

 Coil resonances are observed at frequencies
above 100 kHz

* Coils also function as equilibrium diagnostics
(B coils)
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%’ Toroidal mode numbers are readily identified

Toroidal Mirnov Signals ) ) .
1.0 » The 6-coil LFS array is used to obtain

0.8 - Uneven coil spacing allows for resolution

up to n=12

» Spectral techniques are used to
90°  extract resonant frequencies and
250 phase delays
30° - Cross-power gives spectrum

dB (AU)

r=0 - Cross-phase gives phase shift
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A dominant feature has been a rotating m/n=2/1 mode

g (kA)

0B (Gauss)

Frequency (kHz)

0- T

» Mode present in all significant discharges

! ! * Rotates In electron diamagnetic direction

- Modeislikely magnetic island

* Frequency is typically 4-10 kHz
- No evidence of mode locking

10

n

0.010
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o Little shear stabilization of island growth
- Central shear is nearly zero
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2/1 mode is poloidally asymmetric

» Poloidal and toroidal phase analyses clearly indicate mode is m=2/n=1

 Toroidicity of mode is seen in large phase shifts along centerstack
- Roughly 1.5 wavelengths observed across 120° poloidally

* Mode is strongest on the low-field side
- As plasma grows, LFS signal increases and HFS signal decreases

Perturbed Field Magnitude
at the Wall

2/1 Poloidal Phase at the Wall

2.0 - ~
. Centerstack !
! Coils ,

1.5 : !

Outboard . ;
1.0 Coils : ' Qutboard
1 : ! : Coils
0.5 : :
0.0 T ' T T ' T
ﬂ 0.0 0.2 0.4 0.6 0.8 1.0

Mode Poloidal Angle (x2p)

Physical Poloidal Angle (x2p)
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Mode asymmetry demonstrated by
magnetic perturbation at coils

 Polar plot shows displacement of B from zero
- Contains phase and amplitude information
- Plots based on spectral analysis, not raw data

* This is an example of a 2/1 mode
- Note two “positive’ lobes and two “negative” [obes in each plot

 Efforts underway to model Mirnov coil signals
- Helically perturb equilibrium with desired m,n
- Place parallel current on magnetic island
- Calculate resulting perturbed field with real coil geometry
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2/1 mode not observed until gmin < 2

» Consistent with observed helicity of the mode

100 * A large region of low shear exists about
. —_ the =2 surface
/ « Central g inferred from Equilibrium fit
g 907 - 2D SXR camera will constrain qo
2 404 - See Tritzet al. [RP1.036]
* In general, strong MHD activity appears to
20 ..
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Higher-current discharges exhibit
a greater variety of MHD activity

160 4
* Recent operations scenarios 140 | N
produce plasmas with 120 P -2
|p -~ 150 kA 100 — o
- Improved plasma control < so- -0 £
- Improved conditioning 60 - dB J 2
40 — — -2
« 2/1 mode is observed but disappears  2o0-
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An m/n=3/2 mode arises as Ip Increases over 130 kA

Z (m)

* Mode is observed in essentially all discharges over roughly 130 kA
 Toroidal structure (n=2) is clearly and unambiguously present
 Poloidal mode structure is more circular than 2/1

- 3/2 isdland deeper in the core than 2/1

- Poloidal reconstruction isless robust than 2/1 case
- Some up/down asymmetry is observed

[llustration of Mode at Coils
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A 2/1 mode is destabilized after the 3/2 mode appears

» 3/2 mode appears after a quiescent
period following the end of the 2/1 mode 5
-l and I, risein this period

* Frequency of 3/2 mode typically
iIncreases throughout its lifetime Py

dB (Gauss)
o
|

 2/1 island re-appears after 3/2
mode begins
- Delay is1-3ms
- 2 modes are discerniblein
the raw data

» Why does 2/1 become destabilized?
- Profile modification due to 3/27?
- Mode coupling with an
unobserved 1/1 mode?

Frequency (Hz)

« Can these modes be stabilized by
optimizing the run scenario?

0.017 0.018 0.019 0.020 0.0271 0.022
Time (S)
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MHD activity appears to limit plasma performance

Joo———gh MHAD Shot Low MHD Shot « Reduction in MHD typically results
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Fluctuations are observed on coils prior to disruption

150 —
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> -2« Higher-current discharges (150 KA class)
) ) often terminate in abrupt disruptions
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1000 1 1
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Q  Fluctuations are observed on Mirnov coils
= 600 Midpl . . . . .
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Data and calculations indicate external kink modes

e P ———

* Observed disruptions are associated 1204
with edge kink limits 1
- Oscillations not observed until

qos b

Ip (kA)
(0]
o
(@]
(s/L) wp/ap

 Calculated free-boundary
energy approaches zero as
oscillations begin
- Negative value indicates instability
to external kink
- Calculations made with DCON
and VACUUM

Uos

 Consistent with theoretical
understanding of ideal kink stability
at near-unity A
- ASA® 1, stable qg increases

- Doesfinite b play arole?

8_
&;100

« Mode grows on a hybrid time scale 10
between t » and q(dg/dt)-1 »W\MM | I
- Roughly as expected for a plasma 0.018 0.019 0.020 0.021 0.022 0.023
slowly crossing instability boundary Time (s)
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Poloidal soft X-ray diagnostic will aid MHD diagnosis

» 18-channel array
- Originally from S-1 spheromak
- Vacuum can modified for PEcasus

» Standard detector technology
- Reverse-biased SiLi diodes
- 2-stage amplifiers

» Metal foil filters placed on each diode
- Shielded from Ti gettering

 Full array will be made operational
later this year
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SXR array observes 2/1 mode

120
— 80
g « SXR array was tested using a
— 40- single central channel
0 ! . . » Diagnostic observes bulk plasma signal
0.3 * Also observes fluctuations associated
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Summary of MHD activity on PEGASUS

e Large magnetic islands are observed

- 2/1 mode seen in all high-power shots
- 3/2 mode observed in 150 kA class shots
- Mode helicities consistent with gmjn < mvn

- 3/2 mode associated with destabilization of 2/1
- Soft X-ray array will provide details of internal structure

* These islands appear to degrade plasma performance

- More quiescent plasmas exhibit lower Cg
- Discharge tailoring can reduce effects of modes

e Disruptions in higher-power plasmas are associated
with external kinks
- Equilibria suggest g=>5 is culpable surface
- Rapidly-growing oscillation observed immediately prior to disruption
- DCON and VACUUM predict instability at correct time
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