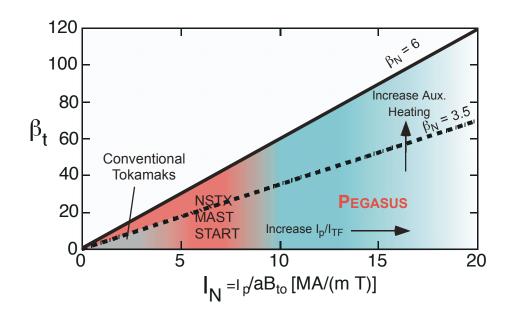
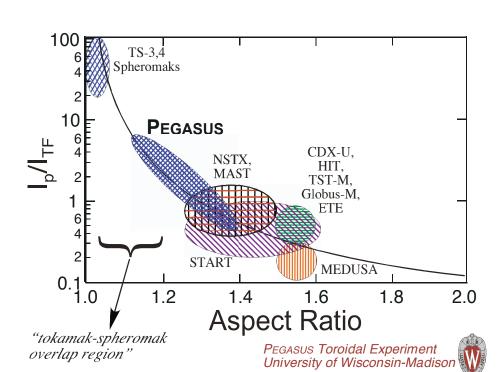


Pegasus Extends ST Parameter Space




<u>Goals</u>

- Limits on β_t and I_p/I_{TF} (kink) as $A \rightarrow 1$
 - Overlap between tokamak and spheromak
- Stability and confinement at high I_p/I_{TF}
 - Extension of tokamak studies
- Support ST development to next stage

- Stability at high I_p/I_{TF}
 - Explore kink stability limit in ULART
- ST development support
 - EBW tests for heating and CD (w/PPPL)
 - Noninductive startup techniques

Outline

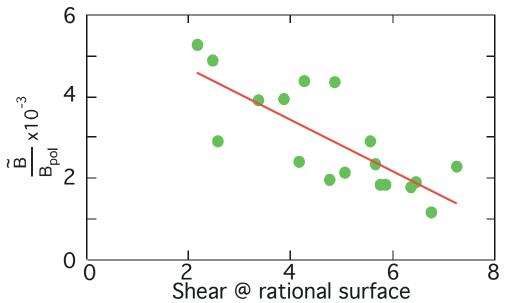
PEGASUS Upgraded to Highly Flexible Facility

- Phase-I: "soft-limit" in I_p/I_{TF} due to low-A physics and limited discharge control
- Phase-II: facility upgrade ⇒ fully programmable power supplies ⇒ discharge control; flexibility

Recent Focus: Integration of Capabilities and Tearing Mode Mitigation

- Large array of upgraded capabilities nearly complete
- Phase-I operating space recovered and extended
- To-date: V-s $\sim 30 \text{ mV-s} \approx 1/3 \text{ maximum}$
- Mode mitigation experiments ongoing with increased discharge control

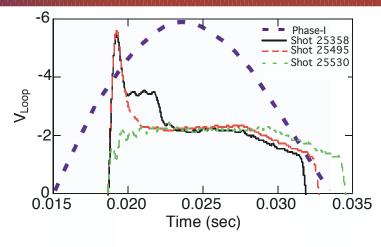
Phase-II Campaign: Stability in I_p/I_{TF} > 1 Regime; ST Development

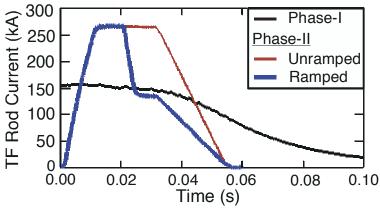

- Goal: $I_p/I_{TF} \sim 2-3 \; (I_N \sim 10-20)$
 - Stability and confinement modelling show attainability in PEGASUS
- Electrostatic current injection and EBW heating development ongoing

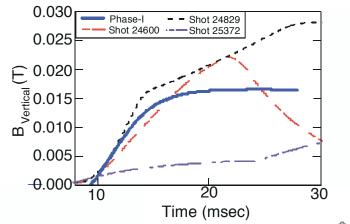
Phase-I Defined a "Soft-limit" in Ops

- Maximum $I_p \approx I_{TF}$
- Soft limit due to 2 factors:
 - Tearing modes with rapid growth and large island widths
 - Reduced V-sec as TF decrease

- Crude manipulation of q(r) reduced mode amplitude
 - Increased shear, $q_0 \Rightarrow$ delay tearing onset
- \Rightarrow Access higher I_p/I_{TF} via higher q_0 , T_e , shear


Approaches Developed to Access High Ip/ITF


\cdot Approaches and tools to increase I_p/I_{TF}


- Manipulate current profile
 - V_{loop} control, position/shape control, $B_t(t)$
- Reduce η before low-order rationals appear
 - V_{loop} control, position/shape control, RF heating (HHFW)
- Transiently increase q during startup
 - $B_t(t)$, V_{loop} control

Main facility modifications

- Power Supplies
 - OH: effective V-s † w/ increased waveform control
- Coil Sets
 - Lower inductance TF set: 60 turns \Rightarrow 12 turns
 - PF Set: monolithic set \Rightarrow 8 independent sets
 - Divertor coil set installed

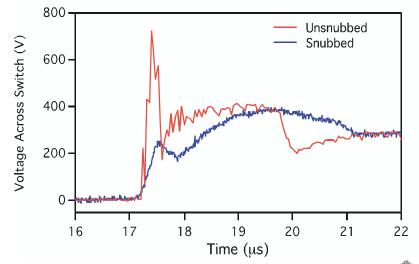
Highly Flexible Experiment with Modular Programmable Power Supplies

Switchyard with the 40 subsystems

250 MVA programmable power

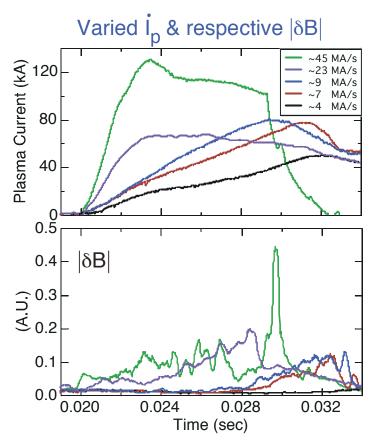
- Economical, high-power, solid-state switches
- Impedence matched for each coil
- Allows more effective power with less stored energy

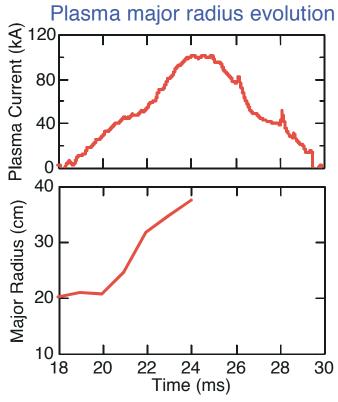
Large degree of coil arrangement flexiblity


- Up to 40 independent subsystems @ 4 kA available
 - 28 @ 900V
 - 12 @ 2700V
- PWM feedback gives msec time response (U.Wash)

Allows easy integration to active PCS system

- Real-time control under development with GA




Transients across single switch in subsystem

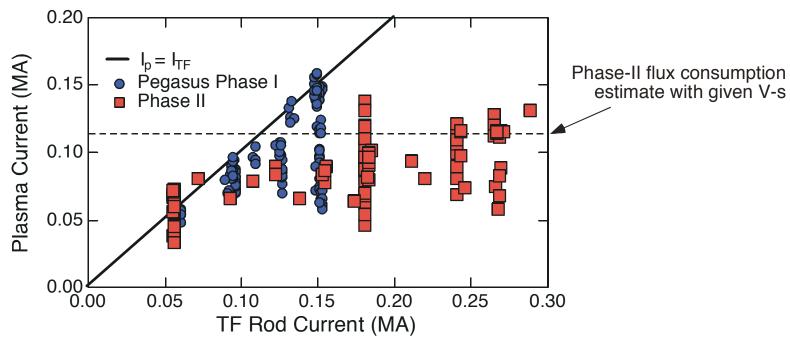
New Tools ⇒ Discharge Control & TM Mitigation

- Large array of new capabilities developed; deployed into routine use
 - Pre-programmed coil currents
 - New wall conditioning and fueling
 - Variable PF configurations
 - Increased TF with time-variability
 - Divertor coils
- Integration underway to access new operating spaces

Operational Space Expanded

Phase-I operational space recovered and extended

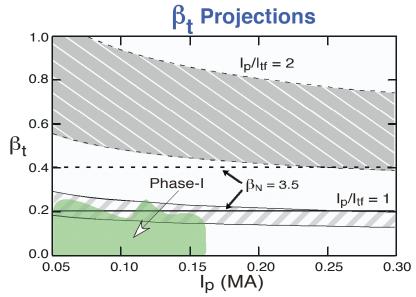
-
$$I_p \rightarrow \sim 140 \text{ kA}$$
; $I_p/I_{TF} \rightarrow \sim 1$

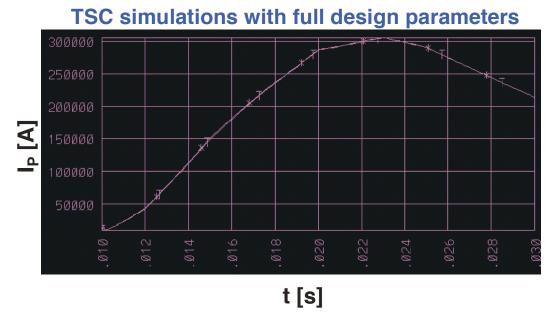

- m/n = 2/1 mode activity observed with ~ same magnitude as Phase-I

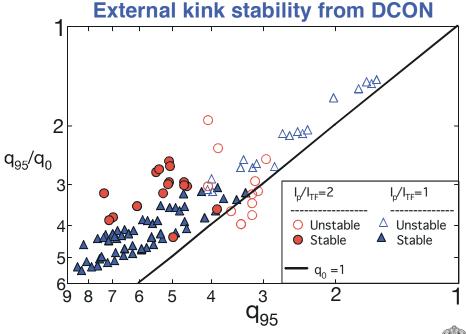
Discharge utilizing all available V-s

 $-\sim 30 \text{ mV-s}$ available vs. Phase-I 60 mV-s $\Rightarrow 90 \text{ mV-s}$ (full design)

Tearing mode mitigation experiments are ongoing


- Optimizing startup to navigate through MHD activity \rightarrow $I_p/I_{TF} > 1$

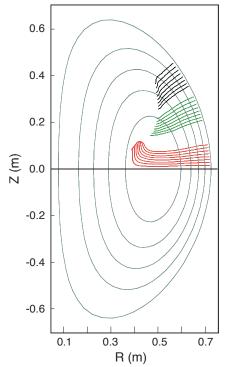



Modeling Gives Path for High Ip/I_{TF}

- DCON: kink unstable regime $\sim q_{95} = 4$ and $I_p/I_{TF} = 2$
 - Further modelling at higher I_p/I_{TF} ongoing
- TSC: suggests accessibility \rightarrow I_p ~ 0.3 MA
- Confinement estimates suggest access to $\beta_{t} > 40\%$

PEGASUS Toroidal Experiment University of Wisconsin-Madison

Future Directions: EBW System and Electrostatic Current Injection



Plasma Gun Injection w/ Filament Reconnection

Electrostatic Current Injectors installed and being tested

- Current amplification $\rightarrow 20X$
- Filament reconnection $\Rightarrow I_{\phi}/I_{GUN} \ge$ geometric stacking
- Closed flux surfaces requires field, gun optimization

EBW Raytracing (GENRAY)

• 0.5-1 MW, 2.45 GHz EBW system under development

- Provides convenient test bed for EBW physics in ST
- Experiments will be a collaborative effort with NSTX & PPPL
- Planned first heating experiments in 2007

Summary

PEGASUS Upgraded to Highly Flexible Facility

- Phase-I: "soft-limit" in $I_p/I_{TF} \sim 1$ due to tearing mode activity
- Phase-II: discharge control \Rightarrow 250 MVA available in H-bridge subsystem

Recent Focus: Integration of Capabilities and Tearing Mode Mitigation

- Large array of upgraded capabilities nearly complete
- Phase-I operating space recovered and extended (w/ 1/2 Phase-I V-s)
- Mode mitigation experiments ongoing with increased discharge control

• Phase-II Campaign: Stability in $I_D/I_{TF} > 1$ Regime; ST Development

- Goal: $I_p/I_{TF} \sim 2-3 \ (I_N \sim 10-20)$
 - Stability and confinement modelling show accessibility
- Electrostatic current injection and EBW heating development ongoing

Pegasus Poster Session

RP1 Session Thursday Afternoon

• RP1.00051: Overview of the Phase II Campaign, Squires et al.

• RP1.00052: Plasma Gun DC Helicity Source, Eidietis et al.

• RP1.00053: Active Plasma Control System, Bongard et al.

• RP1.00054: Electron Temperature Diagnostics, Battaglia et al.

• RP1.00055: EBW Heating and Current Drive, Garstka et al.

• RP1.00056: Modeling of EBW Propagation and Damping, Diem et al.