

Abstract

Outline

• Pegasus is a mid-size ST built to explore A \rightarrow 1

Plasmas exhibit low-A characteristics

- High β_t , I_N , β_N via OH heating - High I_p/I_tf

Characteristics of High I_p/I_{tf} Operation

- Large scale internal MHD limit on I_p/I_{tf}

- External Kink at $q_{95}=5$

• Upgrades to increase access to high Ip/I_{tf}, β_t regime

- Increased V-sec.

- Position and shape control

- B_{TF} versus time

Role of Pegasus in Fusion Community

Mission Statement

An extremely low-aspect ratio facility exploring quasi-spherical high-pressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability.

- Stability at very high TF utilization $(I_p/I_{TF}) > 3$, $(\beta \approx 1)$
- Relaxation stability at tokamak/spheromak boundary for $A \rightarrow 1$
- Access high- β_t at extreme I_N w/o conducting shell

Machine Parameters

-A ~ 1 1 - 1.3

-R ~ 0.2 - 0.45 m

 $-\Delta t_{pulse} \sim 10 - 30 \text{ msec}$

-I_D ≤ 0.15 MA

 $-B_t < 0.30 T$

 $-16 \sim 1.5 - 3.7$

Reconstructions and Mode Analysis Diagnostic Set for

Composite Photograph of Vessel Interior

Plasmas Show Low-A ST Characteristics

High Toroidal Field Utilization Achieved

$I_p/I_{tf} = 1$ routinely achieved

· Ip/Itf "soft" limit due to:

- Large scale internal MHD
- V-sec. availability as Btf is lowered

Resistive modes seen in most discharges

Gauss

20

09 40

k∀

8000

10000

0009

Frequency (Hz)

160 -1401001 80

120-

• Characterized as 2/1 and 3/2 modes - seen as $q_{50} < 2$ and 1.5, respectively

7 2/1

0.022

0.020

0.018

0.016

0.014

0.012

2000

4000

Time (s)

Soft Limit Inhibited by Rational Surface Location and Shear

• Large internal modes degrades plasma - Rollover in Ip

- High $C_E \Rightarrow \text{poor flux consumption, low } \tau_E$
- Estimated large island width, w > 10 cm

• Heuristic analysis predicts $q_0 \approx 2$ limit

$$-\frac{I_p}{I_{TF}} \sim \frac{1}{A^2} \frac{1}{q_0} \left(\frac{1 + \kappa^2}{2} \right)$$

- For Pegasus@ $q_0 \approx 2$: A~1,K ~ 1.7 Hence $I_p/I_{tf} \approx 1$
- Optimization of q-profile leads to less virulent modes

Magnetic shear also mitigates MHD

High q95 external kink limit observed

 ∞

n=1 observed prior to disruption

- Oscillations not observed until $q_{95} \approx 5$ Associated with edge kink limits

S

DCON predicts external kink at mode onset

Consistent with theory expectation

- As A→1, unstable q_a increases

T/s

10

- Roles of finite β , low I_i under study

SXR Image Data Provides Internal Constraint for Determination of $q(\psi)$

- External magnetics constrain plasma boundary
- SXR image provides internal constraint

Access to High I_D/I_{tf}, \(\beta_t\) Operation

Suppression of large internal MHD modes

- Vary q(ψ)

- Lower η before $q(\psi)$ approaches low-order rational mode surfaces

- Tools: increase V-sec. and duration, time-varying Btf

Expand access to external kink modes studies

- Plasma time evolution, shape

- Edge conditions

- Tools: flexible poloidal field system, divertor activation

Access to very high \(\beta_1\) regime for stability analysis

- OH access and HHFW heating availible

Summary

ullet Pegasus is a mid-size ST built to explore A o 1

Plasmas exhibit low-A characteristics

 $\beta_t > 10\%$, $I_N \sim 6$, $\beta_N > 4$ via OH heating

 $- \frac{p}{l} \text{ ft } \sim 1$ $- \frac{1}{l} \sim 0.4$

Characteristics of High I_D/I_{tf} Operation

- Large internal tearing modes contribute to $I_p/I_{tf} \sim 1$

- External kink observed at $q_{95}=5$

• Upgrades to increase access to high $I_p/I_{tf},\ \beta_t$ regime

- Increased V-sec.

Position and shape control

- B_{TF} versus time

Access to High Ip/Itt, Bt Operation

· Manipulate q-profile: suppression of large internal modes

Lower
↑ during plasma formation: suppression of large internal modes

· Manipulate edge current: Expand access to external kink modes

• Access to very high β_t regime for stability analysis

Facility Upgrades for Further Low-A Studies

- Ohmic System: increased V-sec and pulse length
- Toroidal Field: increased at startup, and time-variable
 - Low inductance center rod installed
- Equilibrium Field: flexible shape and position control
 - U. of Washington collaboration
- Activate Divertor Coils: edge separatrix
- HHFW: RF heating power

