

Microtearing modes in the diamagnetic well of a high- β spherical torus plasma

David R. Smith¹, M. Bongard¹, R. Fonck¹, W. Guttenfelder², M.J. Pueschel³, J. Reusch¹, P. Terry¹, Z. Williams¹, and the Pegasus team¹

U. Wisconsin
 PPPL
 U. Texas

Outline

- Background on microtearing modes (MTMs) and electron thermal transport in STs
- MTM linear stability in a diamagnetic well at near-unity β
 - $\beta \sim O(1)$ for HFS LHI operation in Pegasus
 - ▼B reversal alters magnetic drifts (∇B and curvature)
 - MTMs are linearly stabilized in the outer region of the diamagnetic well
 - Additional topics: extended parallel mode structure, collisionality scaling, role of electric potential Φ , fieldline curvature
- MTM-driven transport is suppressed in the diamagnetic well
 - Points to a high- β ST regime with enhanced confinement, possibly in conjunction with β stabilization of drift waves

MTMs and electron thermal transport in STs

- What's special about ST transport?
 - Unlike tokamaks, ST confinement exhibits strong inverse scaling with collisionality: $t_E \propto 1/\nu$
 - Inconsistent with drift waves (ITG, TEM, ETG) that are destabilized as $\nu \to 0$
 - Consistent with (classical) MTM that is stabilized as $\nu \to 0$
 - High β values in STs promote MTM destabilization
 - MTMs only produce electron thermal transport the dominant loss mechanism in STs
 - Also, fusion α 's will dominantly heat electrons
- What are MTMs?
 - Tearing parity modes with parallel current destabilized at q=m/n resonant surfaces (n,m>>1)
 - Driven by electron temperature gradient (unlike current-driven MHD tearing modes)
 - Instability onset at critical β and critical ∇T_e (or a/L_{Te})
 - Perturbed Φ and j_{\parallel} are radially narrow; perturbed B_r is radially broad

Outline

- Background on microtearing modes (MTMs) and electron thermal transport in STs
- MTM linear stability in a diamagnetic well at near-unity β
 - $\beta \sim O(1)$ for HFS LHI operation in Pegasus
 - ▼B reversal alters magnetic drifts (∇B and curvature)
 - MTMs are linearly stabilized in the outer region of the diamagnetic well
 - Additional topics: extended parallel mode structure, collisionality scaling, role of electric potential Φ , fieldline curvature
- MTM-driven transport is suppressed in the diamagnetic well
 - Points to a high- β ST regime with enhanced confinement, possibly in conjunction with β stabilization of drift waves

High-field-side local helicity injection (LHI) in Pegasus achieves β ~100% with edge current peaking

D.J. Schlossberg et al., PRL 2017 D.J. Schlossberg, Ph.D. thesis, 2017

A diamagnetic well ("minimum B") is induced at high β and diminishes strong ST paramagnetism

B deriv.

0.8

R (m)

Magnetic field on outboard midplane (|B| is not a flux function)

 $\frac{d|B|}{d\Psi_N} > 0$ is magnetic well

0.6

 Ψ_{N}

STs are strongly paramagnetic (I_P enhances B_T through J approx. parallel to B at large pitch angle), but gyromotion is diamagnetic such that high β can diminish B. Peng & Strickler, NF 1986

GENE linear flux-tube calculations show unstable modes propagating in the electron diamagnetic direction

simulation location at max ∇B reversal

Spatially-extended, tearing parity mode structures

Mode characteristics are insensitive to ion dynamics

Beta and a/L_{Te} scans confirm modes are MTM

Modes are collisional MTM with stabilization at low collisionality

Finite phi required for robust MTM instability

Broadband MTM instability in core; weakened in edge

Monotonic |B| equilibrium for comparison

Magnetic field on outboard midplane

 $\frac{d|B|}{d\Psi_N}$ < 0 everywhere \rightarrow no mag. well

Minimum-B configuration is stabilizing for MTMs at outer radii

Minimum-B configuration exhibits stronger curvature on the inboard side of outer flux surfaces

Monotonic-B

Minimum-B

Extended region of stronger curvature on inboard side of outer flux surfaces.
Is this stronger curvature responsible for the observed MTM suppression?

Outline

- Background on microtearing modes (MTMs) and electron thermal transport in STs
- MTM linear stability in a diamagnetic well at near-unity β
 - $\beta \sim O(1)$ for HFS LHI operation in Pegasus
 - ∇B reversal alters magnetic drifts (∇B and curvature)
- MTMs are linearly stabilized in the outer region of the diamagnetic well Preliminary NL MTW aling, role of electric potential Φ , fieldline curvature with 10x heavy electrons aling topics: extended parallel mode structure, c

 MTM-driven transport topics: extended parallel mode structure, c

dditional topics: extended parallel mode structure, collisionality

- MTM-driven transport is suppressed in the diamagnetic well
 - Points to a high- β ST regime with enhanced confinement, possibly in conjunction with β stabilization of drift waves

Nonlinear simulations of minimum-B regime show MTM turbulence with radially narrow j_{\parallel} structures and radially extended A_{\parallel} structures

Nonlinear simulations of minimum-B regime show MTM turbulence with radially narrow j_{||} structures and radially extended A_{||} structures

Flux spectra show dominant contribution from low-k_y magnetic fluctuations

Nonlinear simulations with heavy electrons are largely converged with respect to coarser grids

MTM transport with heavy electrons in the minimum-B configuration decreases approaching the edge

The minimum-B configuration shows reduced MTM transport with heavy electrons near the edge where monotonic-B MTM transport is high

Reduced MTM transport in the minimum-B configuration points to a high- β ST regime with enhanced confinement

Summary of results

- Collisional MTMs with extended parallel mode structures are unstable in the high- β ST
 - $\Psi_{\rm N} \approx 0.4 \text{-} 0.8 \text{ and } k_{\rm v} \rho_{\rm s} \approx 0.1 \text{-} 3$
- MTMs at outer radii are stabilized in a minimum-B configuration (diamagnetic well), but remain unstable in a monotonic-B configuration
- Similarly, MTM transport with heavy electrons (10x) falls at outer radii in the minimum-B configuration, but the transport increases at outer radii in the monotonic-B configuration
 - Suggests the high- β diamagnetic well offers a favorable confinement regime with MTM suppression, possibly in conjunction with full drift-wave suppression