Microtearing Instabilities, ∇B Reversal, and Magnetic Drifts in the Pegasus Local Minimum |B| Regime

D.R. Smith¹, M.W. Bongard¹, R.J. Fonck¹, G.R. McKee¹, M.J. Pueschel² (U. Texas), J.A. Reusch¹, P.W. Terry¹, Z.R. Williams¹

¹Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 ²Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712

A local minimum |B| "magnetic well" region is readily accessed in high- β plasmas driven by local helicity injection in the $A \sim 1$ Pegasus ST. This magnetic topology may afford novel, favorable characteristics affecting turbulent transport. $\[PB]$ reversal on the low-field-side is stabilizing for drift waves, reduces the trapped particle fraction, and expands the parameter space for fast ion trapping. The magnetic configuration, however, remains net-paramagnetic with near omnigeneity ($|B| \approx |B|(\psi)$) in the bad curvature region. Small banana orbit widths in an omnigeneous region reduce neoclassical transport. Here, we report on the gyrokinetic stability of microtearing modes in the Pegasus minimum |B| regime. Multiple classes of microtearing instabilities arise at $k_y \rho_s \sim 0.1$ -1 in the magnetic well region at $\psi_N \sim 0.3$ -0.9 on the outboard midplane. Modes at $k_y \rho_s \sim 0.2$ are insensitive to the ∇p component in magnetic drifts which is common in lower β scenarios. Modes at $k_y \rho_s \sim 0.8$, however, are highly sensitive to the ∇p component. Also, exclusion of the ion species is destabilizing for $k_y \rho_s \sim 0.8$ modes in contrast to typical microtearing modes. Preliminary nonlinear simulations will also be presented.

Work supported by US DOE grants DE-SC0001288 and DE-FG02-96ER54375.