

Abstract

- Technological advances are exploited by a Thomson scattering diagnostic on the Pegasus Toroidal Experiment
 - New diagnostic leverages high-energy pulsed laser, VPH diffraction gratings, ICCD cameras
 - Pegasus is a spherical tokamak (A \approx 1.2, B_{T.0} \approx 0.1, I_{p.max} \approx 0.2 MA)
 - Typically $n_e = 10^{18} 5 \times 10^{19} \text{ m}^{-3}$; expected $T_e = 10 500 \text{ eV}$
- Photon source is a Nd:YAG Q-switched laser
 - Operated at first harmonic, 532 nm
 - Pulse is characteristically 2 J, 7 ns FWHM, <10 Hz rep rate, dia_{min} < 3 mm
- Beamline and viewing geometry optimized
 - 7 m long beamline, minimal turning mirrors, high F/# PCX focusing lens
 - Collection area spans >70% of plasma radius, 1.4 cm radial resolution
- Diagnostic designed for moderate range of plasma conditions
 - Typically $>4 \times 10^3$ collection photons for $n_e > 0.5 \times 10^{19}$ m⁻³, $T_e > 10$ eV

