

Abstract

- Technological advances are exploited by a Thomson scattering diagnostic on the Pegasus Toroidal Experiment
 - New diagnostic leverages high-energy pulsed laser, VPH diffraction gratings, ICCD cameras
 - Pegasus is a spherical tokamak (A \approx 1.2, $B_{T,0} \approx$ 0.1, $I_{p,max} \approx$ 0.2 MA)
 - Typically $n_e = 10^{18} 5 \times 10^{19} \text{ m}^{-3}$; expected $T_e = 10 500 \text{ eV}$
- Photon source is a Nd:YAG Q-switched laser
 - Operated at first harmonic, 532 nm
 - Pulse is characteristically 2 J, 7 ns FWHM, <10 Hz rep rate, dia_{min} < 3 mm
- Beamline and viewing geometry optimized
 - 7 m long beamline, minimal turning mirrors, high F/# PCX focusing lens
 - Collection area spans >70% of plasma radius, 1.4 cm radial resolution
- Diagnostic designed for moderate range of plasma conditions
 - Typically $>4 \times 10^3$ collection photons for $n_e > 0.5 \times 10^{19}$ m⁻³, $T_e > 10$ eV

Pegasus is a compact ultralow-A ST

Equilibrium Field Coils

Vacuum Vessel

Toroidal Field Coils

High-stress Ohmic	
heating solenoid	

<u>Parameter</u>	<u>Achieved</u>	<u>Goals</u>
A	1.15 - 1.3	1.12 - 1.3
R(m)	0.2 - 0.45	0.2 - 0.45
$I_{p}(MA)$	≤ .21	≤ 0.30
I_{N} (MA/m-T)	6 - 12	6 - 20
RB_{t} (T-m)	≤ 0.06	≤ 0.1
κ	1.4 - 3.7	1.4 - 3.7
$\int_{\text{shot}} (s)$	≤ 0.025	≤ 0.05
β_{t} (%)	≤ 25	> 40
$P_{HHFW}(MW)$	0.2	1.0

Experimental Parameters

Major research thrusts include:

- *Non-inductive startup and sustainment*
- Tokamak physics in small aspect ratio:
 - *High-I_N, high-\beta operating regimes*
 - ELM-like edge MHD activity

Point-Source Helicity Injectors

Ohmic Trim Coils

Thomson scattering occurs when incident EM radiation excites free electrons

- Thomson scattering = scattering of EM radiation from free electrons
 - Assumes $h\nu \ll mc^2$
 - Here, assume incoherent scattering $(k_{inc}\lambda_D \gg 1)$
- Small scattering cross-section requires large photon flux (ex. laser)

$$\phi = \angle \widehat{E_i}, \widehat{s}$$

$$\frac{dP}{d\Omega_s} = r_e^2 \sin^2 \phi \, c\epsilon_0 |E_i|^2 \qquad \begin{array}{l} \text{Incident electric field} \\ \text{Classical electron radius} \approx 2.8 \times 10^{-15} \, \text{m} \end{array}$$

- Scattered photon is Doppler shifted proportionally to electron's velocity, along the line of sight
- Frequency bandwidth of the scattered light is proportional to T_e
 - Dispersion grating used to measure $\Delta v = c/\Delta \lambda$

Pegasus Thomson Scattering Overview

Pegasus Thomson Scattering System, Cutaway Top View

Laser specifications balanced between commercial availability and physics needs

Specification	Value	Determining factors
Output Energy	≥ 2000 mJ	Scattered intensity fraction
Divergence	≤ 0.5 mrad	Desired spatial resolution, component damage thresholds
Pointing stability	≤ 50 µrad	Beam line
Pulse length	≥ 10 ns	Availability at desired power
Repetition Rate	≥ 10 Hz	Shot duration; availability
Jitter	≤ 500 ps	Time resolution
Beam diameter	8 – 15 mm	Availability
Polarization ratio	≥ 90%	Scattering dependence
Energy stability	± 2 %	Availability; repeatability; Intensity resolution

- Identify tolerable limits due to physics needs and layout constraints
- Reliable, "turn-key" operation of laser required
 - Nd:YAG used extensively for MPTS in plasmas
 - Operate flash lamps at steady 10
 Hz to obtain maximum stability
- Implement design with consideration for possible future upgrades:
 - Additional spatial points
 - Multiple laser passes
 - Multiple time points per shot

Beam pointing stability and focusing will provide well-defined viewing volume

- Beam focused over ~9m path length onto a fastframing CCD camera
 - Single plano-convex lens
 - 5.6 μm pixel size, 640x480 pixels
 - Attenuation > 10⁻⁶ needed to avoid camera saturation
- Pointing stability within 3 mm viewing area defined by collection optics
- Focused beam diameter within expected range

Beam energy and temporal pulse shape satisfy design requirements

- In-house calibration to ensure actual performance matches requirements
 - Test key laser properties (energy, pulse duration, pointing stability)
- Tests designed to mimic Pegasus shot cycle times and typical laser use
 - Single laser pulse every ~5 minutes

Full-power beam diameter matches design specification

Scattered intensities ~µWatts for typical Pegasus plasmas

- Preliminary calculations yield scattered intensities of ~4×10⁴ total photons, assuming:
 - incoherent, non-relativistic scattering
 - 2J, 7 ns Nd:YAG laser pulse
 - solid angle of ~0.01 ster/channel
- Pegasus plasma durations are ~30 ms
 - Will only be able to measure one laser pulse per plasma shot

$$\begin{split} I_{det} &= \frac{E_{laser}}{E_{photon}} \sigma n_e l \frac{\xi}{4\pi} \\ &= E_{laser} \left(\frac{\lambda_{laser}}{hc} \right) \sigma n_e l \frac{\xi}{4\pi} \\ &\approx 2.66 \times 10^{11} \, s^2 / kg \, (E_{laser} \cdot \lambda_{laser} \cdot n_e \cdot l \cdot \xi) \end{split}$$

Symbo	l: Inputs:	
E_{laser}	Laser output energy (J)	2
λ_{i}	Incident laser wavelength, λ_{m} (m)	5.32E-07
n _e	Electron density (m ⁻³)	1.00E+19
I	Length of beam for one channel (m)	0.014
ξ	Solid angle subtended by optics (ster)	9.23E-03
	Pulse duration (s)	7.00E-0 9
	Output:	
l _{laser}	Number of laser photons incident/pulse	5.35E+18
1.	Number of photons scattered/pulse	36582.10
I _{det}		
'det	Joules incident at primary wavelength	1.37E-14

Spectral range 532 – 592 nm for Pegasus operating scenarios

- Pegasus plasmas expected to have 10 eV < T_e < 500 eV
- Use high dispersion VPH grating for low temperatures:
 - 532 nm $< \lambda_{inc} < 562$ nm
- Use low dispersion VPH grating for high temperatures:
 - 532 nm $< \lambda_{inc} < 592$ nm
- Signal levels will likely dictate $\Delta\lambda_{inc} \approx 4$ nm and 8 nm in the low and high temperature cases, respectively

Based on: J. Sheffield, "The Incoherent Scattering of Radiation from a High Temperature Plasma", Plasma Phys., **14**, 783-791, 1972.

- Predictions assume 90° average scattering angle with ~10⁻² solid angle
 - Relativistic effects evident in shift of central wavelength at $T_e > 500 \text{ eV}$

Custom Collection Optics Designed and Fabricated

- 4 element lens system with 134 mm dia. aperture stop
- 132 cm² on-axis collection area with object distance ~80 cm
- Collection: ~F/6
- Imaging: ~F/1.75
- Able to view r/R_{vessel} = 0.16-0.84,
 collects over 63° < θ_{scattering} < 110°
- Mounted on a vibration-isolated stand, free-standing from vacuum vessel
- Fiber optic holders can be placed anywhere along lens' image plane

Collection Lens System Characterized

- Laboratory testing shows ~50% contrast for all spatial locations at 2.25 line pairs/mm
 - 1951 USAF resolution test chart used
 - In-vessel imaging area 3 mm x 14 mm
- Lens system is slightly anamorphic
 - Horizontal magnification ~0.40
 - Vertical magnification ~0.42
- System designed by Wright Scientific, Inc. and modeled in ZEMAX

Initial System Designed for Expandability

- Inidividual channels correspond to close-packed fiber bundles
 - 1.5 cm radial resolution
- Initially, 4 data channels and 4 background monitors
 - Evaluate performance & plasma conditions and reconfigure as needed
 - Upon successful implementation, immediately begin expanding to 16 additional channels
- Scan array radially from shotto-shot
 - Initially manual positioning
 - Expand to automated positioning across curved collection optics focal plane

Novel spectrometer system employs VPH grating and ICCD camera

- Custom achromat entrance lens
- Custom Volume Phase Holographic (VPH) diffraction gratings
- Image Intensified CCD (ICCD) detector
 - High quantum efficiency Gen 3 Intensifier
 - Fast gating capability down to 1.2 ns

Synthetic data created in IGOR

- Based on Sheffield's model/corrections for Thomson scattering:
 - 1. Starts with exact results
 - 2. Duplicates for each row in given channel
 - 3. Adds photon noise from scattering
 - 4. Adds estimated background signal from plasma
 - 5. Adds detector dark current + dark current noise
 - 6. Adds camera baseline offset
 - 7. Add readout noise from detector amplifiers
 - 8. Rescales assuming data is optimized for detector's full dynamic range (16-bit)

See: J. Sheffield, "The Incoherent Scattering of Radiation from a High Temperature Plasma", Plasma Phys., **14**, 783-791, 1972.

$$P_{sc}(R,\lambda_s)d\lambda_s d\Omega = \frac{P_i r_0^2 d\Omega n_e Lc}{2\pi^{1/2} \operatorname{asin}(\theta/2) \lambda_i} \cdot \left\{ 1 - \frac{7}{2} \frac{\Delta \lambda}{\lambda_i} + \frac{c^2 \Delta \lambda^3}{4a^2 \lambda_i^3 \sin^2(\theta/2)} \right\} \times \exp\left(-\frac{c^2 \Delta \lambda^2}{4a^2 \lambda_i^2 \sin^2(\theta/2)} \right) \cdot d\lambda_s$$

where the incident power $P_i=\frac{cE_i^2}{8\pi}A$ and $r_0=\frac{e^2}{8\pi}=2.82\times 10^{-13}cm$

Initial data analysis routine begun

- Initial data routine coded to obtain temperatures:
 - 1. *Uses 1024x1024 image as input*
 - 2. Bins data in "spatial direction"
 - 3. Bins data in "dispersion" direction
 - 4. Applies Gaussian curve to obtain FWHM
 - 5. Converts to temperature using exponential coefficients from Sheffield

Several calibration methods under consideration

Typical calibration methods span orders of magnitude in cross-section:

- $-~\sigma_{Rayleigh}\approx 10^{\text{-}28}~\text{cm}^{\text{2}}/\text{sr}$
- $-\sigma_{Raman} \approx 10^{-31} \text{ cm}^2/\text{sr}$
- $-~\sigma_{Thomson}\approx 10^{\text{-}33}~cm^2/sr$

Alternate methods include:

- Comparison with existing Pegasus diagnostics (ex. µwave interferometer)
- Vacuum-compatible calibrated source, actuated to move along beamline

NSTX Raman Calibration
From LeBlanc, Rev. Sci. Instr. 79, 10E737 (2008)

Typical PEGASUS plasma density

Vacuum-compatible insertable calibration assembly designed

- Single assembly with 2 configurations:
 - Spatial Calibration: Brewster angle window, reentrant tube, scatter-plate
 - Spectral Calibration: Fiber optic vacuum feed-through, reentrant tube, fiber-coupled integrating sphere
- Could be use in addition to, or instead of, Raman/Rayleigh scattering

Bremsstrahlung emission a tolerable fraction of scattered signal

- Predicted Bremsstrahlung emission shows ~photons/nm collected
 - Short collection time (8ns)
 - Moderate single channel viewing volume (231 cm³)
- Actual Bremsstrahlung measured with scanning spectrometer
 - Small peaks within Thomson collection spectral range
- Choice of spectral collection region avoids D_a and N₂ lines

Predicted Bremsstrahlung Emission* per 8 ns pulse from 231 cm³ scattering volume

*following Karzas and Latter, Astrophys. J. (Supplement) 6 1961, 167

Measured Bremsstrahlung Spectrum 14 12 10 8 6 4 2 0 520 540 560 Wavelength (nm)

Precision timing provided by tunable delays

- Sub-nanosecond synchronization necessary between components
 - User requests laser pulse at given time t₀ during shot
 - Pegasus control code issues Timing Sequence Module (TSM) pulse at $(t_0 t_{flash} t_{Q-switch})$
 - Variable Sync Output on laser supply triggers camera acquisition
- Tuned to account for laser propagation time through beamline and electronics calculation time internal to camera

Summary

- A new Thomson scattering diagnostic has been designed and is being implemented on the Pegasus Toroidal Experiment
 - $-10 \text{ eV} < T_e < 500 \text{ eV}, 10^{18} \text{ m}^{-3} < n_e < \sim 5 \times 10^{19} \text{ m}^{-3}$
- Nd:YAG laser, collection optics, beam dump & beam line have been characterized and are ready for installation
- Spectrometer testing is nearly complete, and will be ready for implementation in the early summer
 - Uses Volume Phase Holographic (VPH) diffraction grating, and intensified CCD (ICCD) camera
- Calibration procedures are under development, and in-situ methods are being explored

