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AbstractAbstract
Characterization of Magnetic Structure and Activity in Local Helicity Injection 

C.E. Schaefer, G.M. Bodner, M.W. Bongard, R.J. Fonck, J.A. Reusch, N.J. Richner

Department of Engineering Physics, University of Wisconsin-Madison

Local Helicity Injection (LHI) is a non-solenoidal startup technique that initiates a tokamak-like discharge using 
electron current injectors at the plasma edge. Comparisons on the Pegasus ST of internal 3D B(R,t) Hall probe 
measurements with Thomson pressure profiles show the magnetic boundary is shifted up to 8 cm outward 
relative to the kinetic pressure edge. In Ohmic-driven discharges this disparity is not present. In comparison to 
Ohmic, LHI discharges show increased broadband and low-frequency n = 1 magnetic activity that is localized to 
the edge region where the injected current streams presumably exist and the kinetic pressure is near zero. The 
broadband activity exhibits power law behavior resembling Alfvénic turbulence, while high-frequency activity (f ~ 
2 MHz) increases with total LHI drive. These observations, plus earlier reports of anomalous ion heating in the 
edge region, suggest a two-zone confinement structure during LHI consisting of an inner tokamak-like plasma 
and an outer force-free region of injected current. The outer region appears to be characterized by strong local 
magnetic and reconnection activity, poor thermal confinement, and presumably strongly stochastic field 
structures. These measurements are being applied to studies of the spontaneous reduction of low-frequency 
MHD activity and consequent improvement of LHI current drive.

Work supported by US DOE grants DE-FG02-96ER54375 and DE-SC0019008. 
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Local Helicity Injection Routinely Used for 
Non-Solenoidal Startup on Pegasus

Local Helicity Injection Routinely Used for 
Non-Solenoidal Startup on Pegasus

A
R(m)
Ip (MA)
Bt,0 (T)
τshot (s)

1.15 – 1.3
0.2 – 0.45 
≤  .23
0.1-0.2
≤ 0.025

• Edge current extracted from compact 
injectors

• Unstable current streams relax to 
tokamak-like state

C.E. Schaefer, APS DPP 2019
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Confident Scaling to Next-Step Devices Requires 
Physics Understanding of LHI CD

Confident Scaling to Next-Step Devices Requires 
Physics Understanding of LHI CD

• LHI 𝑉+,, from helicity balance:

• Reconnection of 𝐼-./ = potential CD (NIMROD*)
– Associated with bursts of low-𝑓 𝑛 = 1 activity

– Observed in experiment

• Additional physics/CD mechanism(s) active
– Regimes with sustained 𝐼2 and suppressed 𝑛 = 1

– Reconnection 𝑇- correlated with high freq. activity**

à Insertable probes used to investigate

*O’Bryan et al., Phys. Plasmas 19 080701 (2012)
O’Bryan and Sovinec, Plasma Phys. Control. Fusion 56 064005 (2014)

Sustained 𝐼2 with 𝑛 = 1 activity suppressed
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**Burke et al., Nucl. Fusion 57 076010 (2017)C.E. Schaefer, APS-DPP 2019
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Insertable Magnetic Probes Provide Internal Measurements of 
Magnetic Structure and Activity

Insertable Magnetic Probes Provide Internal Measurements of 
Magnetic Structure and Activity

C.E. Schaefer, APS-DPP 2019

• MRA – �̇�?(𝑅) array
– 15 channels, 𝛥𝑅	~	1	cm
– Calibrated transfer function to ~ 6 MHz

– Active length of ~14 cm

• MRS – Hall sensor array
– 3D 𝐵 𝑅 at 8 channels: 𝛥𝑅 = 	1.5	cm
– Additional 7 BZ sensors: 𝛥𝑅JK = 0.75	cm	

– Active length of  ~11 cm

13.5 mm
5.8 mm5.8 mm

5.0 mm

𝐵N
𝐵?

𝐵9 7.5 mm7.5 mm

MRS Sensor Layout

MRA Coil Layout

N.J. Richner et al., Rev. Sci. Instr. 89 10J103 (2018) 
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Top-down
• Probe position adjustable 

along PEGASUS midplane
– 𝑍	~	0 cm

– 𝑅	 = 	50	– 	100	cm

• External magnetics provide 
additional outboard fluctuation 
measurements: 

– Toroidally and poloidally
distributed Mirnov coils

– Effective bandwidth of 400 kHz 

Probe

Injectors

PEGASUS Magnetic Diagnostic Layout

Cross-section

External Coils Provide Additional Magnetic MeasurementsExternal Coils Provide Additional Magnetic Measurements

Probe
Injectors



Measurements Indicate 
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Measurements Indicate 
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MRS Probe and Thomson Scattering Measurements 
Used to Study Plasma Edge

C.E. Schaefer, APS DPP 2019

• Experiments in 2019 campaign characterized 
kinetic / magnetic boundary structure during LHI

• Thomson scattering measures kinetic boundary
– ≈ 10% maximum 𝑃+ level

• MRS probe measures magnetic boundary
– Vacuum shot-corrected 𝐵2	à plasma + stream field 

structure 

– Magnetic boundary from peak in 𝐵?,S<==.(𝑅)

• Equilibrium model: kinetic and magnetic 
boundaries should align for Ohmic plasmas

– Edge current region hypothesized to yield radial 
displacement of magnetic boundary

Profiles from Ohmic Plasma 
Equilibrium Reconstruction 
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Ohmic Discharges Show Alignment of Kinetic and Magnetic BoundariesOhmic Discharges Show Alignment of Kinetic and Magnetic Boundaries

C.E. Schaefer, APS DPP 2019

Thomson and MRS Profiles from Ohmic Discharge

• Boundaries are aligned to 
within expected error
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Outward Shift of Magnetic Boundary Relative to
Kinetic Boundary During LHI

Outward Shift of Magnetic Boundary Relative to
Kinetic Boundary During LHI

C.E. Schaefer, APS DPP 2019

Thomson and MRS Profiles from LHI Discharge

∆𝑅U 	≈ 11	cm• Magnetic boundary shifted ~11 cm 
outward relative to kinetic boundary

• Suggests two-zone magnetic structure
1. Inner confined plasma region

2. Outer force-free current region
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HFS LHI to Ohmic Handoff Discharges Show Distinct Features in 
Magnetic Structure During LHI

HFS LHI to Ohmic Handoff Discharges Show Distinct Features in 
Magnetic Structure During LHI

C.E. Schaefer, APS DPP 2019
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OHLHI

• Magnetic structure changes across LHI-OH 
transition

– 𝐵? peak narrows and shifts inward
– Bipolar 𝐵V structure vanishes
– Structure changes on ~100 µs timescale as 𝐼-./ falls off 

MRS Profiles during LHI and OH Phases
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Edge Current Models Explain 
Magnetic Structures

Edge Current Models Explain 
Magnetic Structures
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C.E. Schaefer, APS DPP 2019

Extract 𝐽 𝑅,𝑍 	grid from 
OH equilibrium

Calculate 𝐵 via axisymmetric 
Green response
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• 2-D Axisymmetric current filaments as working element
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C.E. Schaefer, APS DPP 2019

No BR structure

Field profiles calculated from 
OH Plasma + Current Sheet

Current Model: 
OH Plasma + Current Sheet
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• Assume: 𝐼-./ distributed along outer flux boundary • Assume: 𝐼-./ from single pass of helix dominates 𝐵
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Vertically Asymmetric Distribution of Injector Current in Edge 
Can Reproduce Observed Field Structure

C.E. Schaefer, APS DPP 2019

Bz peak broader, 
shifted outward

BR bipolar 
structure

Field profiles calculated from current model
Current Model: OH Plasma + 
Asymmetric Edge Current

Edge Currents 
( 𝐼-./ = 4kA per filament )
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Single-Injector Identity Experiments Find Strong Toroidal 
Asymmetry in 𝐵" , 𝐵

Single-Injector Identity Experiments Find Strong Toroidal 
Asymmetry in 𝐵" , 𝐵

C.E. Schaefer, APS DPP 2019

• Two similar discharges developed: each driven by single 
injector, with a 180° toroidal separation between injectors

• Significant differences in measured high frequency fluctuation 
power and average magnetic structure observed

• Asymmetries imply localization of current streams 
– Motivates future 3-D treatment

Field Profiles from MRS Probe
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Current Stream Dynamics Studied 
with Magnetic Boundary Tracking 
Current Stream Dynamics Studied 
with Magnetic Boundary Tracking 
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C.E. Schaefer, APS DPP 2019

B] t from single MRS sensor

Tracking magnetic boundary 
at times within window

Boundary tracking time window
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from peak in spline fit to
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C.E. Schaefer, APS DPP 2019

Boundary Movement & LFS Mirnov in Ohmic

OH LHI
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Boundary Movement & LFS Mirnov in LHI

• Low boundary variation: ∆𝑅U,abc 	≲ ±1	cm

• Correlation with n = 1 tearing mode (	≈ 8 kHz)

• High boundary variation: ∆𝑅U,abc 	≈ ±2.5	cm

• Strong correlation with n = 1 line-tied kink 
activity in streams (	≈ 25 kHz)

109060 106818
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C.E. Schaefer, APS DPP 2019

1

2

3• 𝐵? 𝑅, 𝑡 : in-out radial motion
• DC offset of 𝐵V 𝑅, 𝑡 oscillates 

about zero 
• Consistent with stream above 

probe sensor
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Streams Appear Stabilized in Space in Reduced n = 1 RegimeStreams Appear Stabilized in Space in Reduced n = 1 Regime

C.E. Schaefer, APS DPP 2019

Comparison of MRS B] and BN Profiles Over 
Oscillation Cycle in Low and High MHD
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Discharge has phases with low & high n = 1 activity

• High-MHD phase has oscillatory motion
• Reduced n = 1 phase has relatively stable stream position 



Potential Links to CD Mechanism(s) 
in High-Frequency Activity

Potential Links to CD Mechanism(s) 
in High-Frequency Activity
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𝐵" Activity Concentrated Within Magnetic Boundary𝐵" Activity Concentrated Within Magnetic Boundary

Radial localization of 𝐵" power
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• High 𝑓 peaked between kinetic and 
magnetic boundaries

• Low 𝑓 (𝑛 = 1 mode) peaked inward of 
kinetic boundary

• Significant turbulent magnetic activity 
consistent with stochastic edge region

C.E. Schaefer, APS DPP 2019
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Significant Magnetic Activity During LHI Resembles Alfvénic TurbulenceSignificant Magnetic Activity During LHI Resembles Alfvénic Turbulence

• Edge-localized high-𝑓 𝐵"456 ≫ 𝐵"h5

• LHI spectral decay similar to Alfvénic turbulence:*
– ~5/3 for 𝑓 < 𝑓S- à MHD turbulence
– ~2.7 for 𝑓 > 𝑓S-	 à KAW and/or whistler turb.

• Such turbulence also associated w/ reconnection:
– Localize turbulence à localize reconnection ?

Edge localized 𝐵" autopower spectrum
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*C.C. Chaston et al., PRL 100, 175003 (2008)
J.P. Eastwood et al., PRL 102, 035001 (2009)C.E. Schaefer, APS DPP 2019
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High 𝑓 ≫ 𝑓S- Activity Correlated with LHI Drive High 𝑓 ≫ 𝑓S- Activity Correlated with LHI Drive 

• Study helicity-sustained discharges w/ varying 𝑉456 à focus on LHI current drive

• Activity above ~	1	MHz (≫ 𝑓S-) increases with 𝐼2, 𝑉456
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Other Observed High-𝑓 Characteristics Suggest Kinetic NatureOther Observed High-𝑓 Characteristics Suggest Kinetic Nature

• KAWs have 𝑘m𝜌o	~	1
– Meas. 𝐿S<==,V 	~	2–10 cm à 𝑘m𝜌o	~	0.1–0.7
– 𝑘Vqr comparable to inj. diameter

• 𝐵" strong function of 𝑉-./
– LHI e- beam: 𝑣U+ba ∝ 𝑉-./

r/u	

• e- beam-driven KAWs:* 𝛾 = 𝛾 𝑣U+ba

*Chen et al., ApJ 793 13 (2014)
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Implications for Moving LHI Startup and CD ForwardImplications for Moving LHI Startup and CD Forward

C.E. Schaefer, APS DPP 2019

• Measurements indicate two-zone structure during LHI
– Inner confined plasma region 
– Outer force-free current region

• Reduced current model reproduces LHI edge magnetic structures with discrete current streams 

• Observed LHI 𝐵 𝑅, 𝑡 dynamics also consistent with discrete injector streams 
– Oscillatory 𝐵 𝑅, 𝑡 consistent with localized n = 1 line-tied stream motion

– Streams stabilized in space during reduced n = 1 regime

• High frequency magnetic activity in LHI edge may suggest mechanisms for underlying current drive
– Located in force-free region, 𝐵" ∝	𝑉456 ,	𝐼w
– Potential effects under investigation: Alfvénic turbulence, reconnection activity, KAW
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