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Local Helicity Injection (LHI) Provides Robust 
Non-Solenoidal Startup on the PEGASUS ST

A.T. Rhodes, APS-DPP 2018

Plasma 
Parameters
Ip ≤ 0.23 MA
τshot ≤ 0.025 s
BT          0.15 T

A 1.15–1.3
R        0.2–0.45 m
a         ≤ 0.4 m
κ 1.4–3.7

Injector 
Parameters
∑ Iinj ≤ 14 kA

Iinj ≤ 4 kA
Vinj ≤ 2.5 kV
Ninj ≤ 4 
Ainj = 2-4 cm2

Iarc ≤ 4 kA
Varc ≤ 0.5 kV

Helicity
Injectors

HFS System
LFS System

• Edge current extracted from injectors

• Relaxation to tokamak-like state via helicity-
conserving instabilities

• Used routinely for startup on Pegasus

Anode

VINJ

+

Varc
+

IINJ

IArc
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Global Helicity Balance and Taylor Relaxation Limits Ip

A.T. Rhodes, APS-DPP 2018

• Relaxation and current drive occur as a result of global helicity balance:

• �� limit by balancing inductive and helicity drive with resistive dissipation:
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• 2-Injector set in lower divertor region
– Helicity drive (�89�) dominated; �� limited by helicity 

drive

Two Configurations of LHI Investigated in Pegasus

A.T. Rhodes, APS-DPP 2018

• 3-Injector set near outboard midplane
– Poloidal field induction dominated; �� mostly Taylor 

limited

Low-Field Side (LFS) Injection High-Field Side (HFS) Injection

- J.D. Weberski, TP11.00112
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HFS LHI Has Been the Focus of Recent Experiments

A.T. Rhodes, APS-DPP 2018

• ��(;) dominated by helicity current drive with 
minimal inductive contributions

– Close to regimes expected at larger scale (e.g. NSTX-U)

• ��	~	0.2	>�	achieved with �89� as majority drive

– Inductive drive ~ 0

– Similar plasma performance to LFS LHI; stochastic losses do 
not dramatically impact performance

• Issues and questions for HFS LHI startup

– Relaxation to tokamak more challenging

– Higher PMI susceptibility at low 	?@A

– Tighter plasma shape requirements

– Confinement and dissipation properties not well understood

– Relation of MHD activity to current drive mechanisms

- Example highest achievable Ip via 
HFS-only LHI

94883
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• Rapid �� growth occurs

Relaxation of Injected Current Streams Forms Tokamak-Like Plasma

�� ≳ CDEF�G	����

A.T. Rhodes, APS-DPP 2018

��	~	CDEF�G	���� �� ≫ CDEF�G	����

• Streams must maintain clearance of 
injector structures

• Injected current weakens �I and enable 
reconnection

• Helicity conserving instabilities redistribute 
current
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Conflicting Requirements for Relaxation at Low Rinj

A.T. Rhodes, APS-DPP 2018

• HFS injectors are toroidally staggered; each 
current stream must clear opposite injector

• Relaxation for HFS injection results from null 
formation in the vertical field at midplane:

�I,JKL M �I,F"NKO

�I,JKL
≳ 0.8

• As toroidal field increases, stronger vertical 
field is needed to maintain correct pitch

�I,���

��,���
	Q 	

∆S(T U 180°)

�	���

- Current multiplication increases greatly after critical �I reduction 

Sufficient Clearance Insufficient Clearance
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• Coupling to plasma for HFS injection 
requires injectors outside of foot of plasma

LHI Requires Close Proximity of Injectors to Plasma Edge

A.T. Rhodes, APS-DPP 2018

• Experiments show greatly reduced �� when 
plasma edge is not near injectors

- Effects of good and bad coupling of the HFS injectors to the 
plasma. Green line: time point with equal �89�

- Field line trajectories from two injector locations
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Increased PMI on Injector Surfaces Observed in HFS LHI at 
Full BT

A.T. Rhodes, APS-DPP 2018

• Cathode spots occur at a critical electric 
field at the injector surface:

– X	~	
Y*+,

Z[\
	Q 	XLF�D

– Need to minimize @" at bias surfaces

• High ��] in divertor region leads to tight 
clearance of toroidal transits

– Increases @" near cathode due to presence of beam

– Potential for surface heating, lowering XLF�D

• High �$E�#"	(~��]) may concentrate local 
@" and lower XLF�D

- Effects of a cathode spot on discharge evolution
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LFS to HFS Injection Handoff Presents Many Benefits to HFS 
Operation

A.T. Rhodes, APS-DPP 2018

• Removes relaxation requirement for HFS LHI

• Poloidal induction utilized for initial growth of ��

• Reduced need for high �?@A and �?@A early in HFS phase leads to less PMI

• Coupling of helicity directly to a relaxed plasma allows for a higher vertical field
– Additional stream clearance gained from increased field and from plasma shape

• Proof-of-concept for switching helicity injection sources mid-shot
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Ip > 0.2 MA Achieved Using HFS LHI Initialized by LFS LHI

A.T. Rhodes, APS-DPP 2018

• 90 kA discharge established using LFS 
injection system

• LFS plasma decouples from injectors 
and moves inboard and elongation 
increases

• HFS injection system couples to this 
target plasma and drives current to 
Q 	0.2	>�

LFS Phase HFS Phase

100819

100810
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Thomson Scattering Profiles Show Strong Peaking of Te and ne
in Handoff Discharges

A.T. Rhodes, APS-DPP 2018

• Thomson scattering profiles 
transition from flat in LFS phase to 
peaked in HFS phase

– LFS: Te ~ 50 eV, ne ~ 4 x 1018 m-3

– HFS: Te ~ 125 eV, ne ~ 1.2 x 1019 m-3

• Peaked profiles during HFS phase 
suggest small stochastic losses

– Pending scaling tests, ���-dominated startup 
appears viable
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Redistribution of Power in Magnetic Fluctuation Spectra 
Between LFS and HFS LHI

A.T. Rhodes, APS-DPP 2018

• Insertable Mirnov array probe used to 
measure magnetic fluctuations (^�_I) in 
edge and SOL

• Edge magnetic spectral content changes 
abruptly around switch in LHI systems

– HFS phase shows higher power at low frequencies, 
and overall less broadband

• Presence of HFS arc streams reduces 
amplitude of fluctuations in LFS plasma

- Sonogram of inner-most probe spatial channel throughout the duration of the 
discharge. Green: HFS gas start; Blue: HFS arc start; White: HFS bias start

- N.J. Richner, TP11.00111

- Autopowers of probe ch.1 at representative time points of LFS and HFS phases
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Plasma Current in LHI Dominated Discharges Shows Linear 
Scaling with LHI Drive

A.T. Rhodes, APS-DPP 2018

• Plotting �� vs geometry-normalized         
�89�	(≡ ��`Fa U

b*+,Y*+,

3*+,
) shows generally 

linear trend

• LFS to HFS handoff shots fit trend of full TF 
discharges

• HFS LHI experiments conducted with static 
geometry and �� to isolate effects of �89�

– ��Cc	~	0

• Linear scaling of �� with �@def observed
– Validation needed for extended pulse duration at full ��]

Handoff discharges fit trend of HFS-only data

Linear Scaling of Ip with Vnorm for static geometry
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Confinement Scaling Models Under Consideration

A.T. Rhodes, APS-DPP 2018

• Existing scaling laws may be useful to bracket LHI

– Ohmic: stable flux surfaces throughout; most optimistic

– Stochastic: broken flux surfaces throughout; pessimistic

• Linear scaling of �� consistent with either extreme for 
specific hypotheses

– ohmic confinement for S"gg~��

– stochastic confinement for 
hij

 
~���

• 2-zone confinement model may be useful

– Stochastic, poor confinement in edge with unstable current streams

– Ohmic-like transport in more quiescent core plasma

• Initial data suggests poor edge, decent core

– Flat k"(e) at edge with large �_I

– Peaked k"(e) in core region

250

200

150

100

50

I p
 [k

A
]

43210
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Magnetic Edge (probe) vs Kinetic Edge (Thomson)
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Distinct MHD Regimes Observed in HFS LHI

A.T. Rhodes, APS-DPP 2018

• “MHD Transition” characterized by abrupt 
reduction in amplitude of Mirnov signals

• Transition is accompanied by a jump in 
plasma current

• Reduction in Mirnov signal mainly due to 
@ U 1 mode suppression

- Top: Plasma current and outboard Mirnov signals 
illustrating MHD transition (Red – with; Black – without)

- Bottom: Mirnov signal autopower showing n=1 reduction

R = 56.6 cm
(inside LCFS)



18

Transient MHD Transitions in Handoff Experiments Indicate 
Threshold Behavior

A.T. Rhodes, APS-DPP 2018

• Conditions for this transition have been 
empirically bounded by

��

��]
≳ 0.8

• Short MHD transition events observed in 
handoff discharges

– Typical peak 
-

06
	≅ 	0.7; close to empirical 

threshold

• Considering plasma conditions that may 
lead to line-tied kink stabilization
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HFS Injection at Decreased Major Radius Impeded by 
Shaping Limitations

A.T. Rhodes, APS-DPP 2018

• Scaling of VLHI indicates increased drive 
as injectors move inboard

– ��� 	~	
b*+,Y*+,

3*+,

• Experiments at 	��� U 17.5	of

encountered geometry obstacles
– Location of lowest-z point of plasma must be 

inboard and below injector position 

– Field shaping coils in Pegasus limit 	���,a��~21	of

- Predictive equilibrium of strongest available 
shaping with Pegasus coils. 
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Larger Area Injectors for HFS LHI in Design Phase

A.T. Rhodes, APS-DPP 2018

• Due to limitations on 	��� and ����, 
increasing ���� presents most promising 
near term path to higher performance

• Two 6-8 cm2 aperture injectors currently 
being designed based on 4 cm2 designs

• Limits on increasing ���� further:

– Arc plasma eventually becomes hollow

– Less effective coupling to plasma

- Left: 8 cm2 gun design vs Right: 4 cm2 existing gun design
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Advanced Injector Shapes to Provide Access to High Performance 
with LFS LHI

A.T. Rhodes, APS-DPP 2018

• Design of a high ����, low p��� injector is 
underway for LFS LHI

– Increased ���� capability while maintaining low p��� to 
increase Taylor limit

– Large ���� allows for low ���� operation

• Injector shape conforms to flux surfaces to 
improve coupling

• Active gas feedback control to balance ���� and  
����

• Anode fueling to improve arc stability

• Programmable ����(;) for plasma evolution 
control

- CAD model of new 
LFS injector utilizing 
high Ainj and low winj
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Conclusions and Future Work

A.T. Rhodes, APS-DPP 2018

• Handoff between the two helicity injection systems in Pegasus has achieved reliable, 
high performance operation at ��	 Q 	0.2	>�

– Conceptual validation of transferring current drive between multiple helicity injection systems

• Transient MHD transition at full ��] suggests threshold behavior
– Understanding and controlling transition may enhance current drive efficiency

• Confinement scaling models offer several options to describe �� vs �89�
– Data hints at different core/edge behavior

• Further optimization of injector geometry to improve performance of LHI
– Larger area injectors to increase �89�

– Advanced injector shapes to increase Taylor limit and improve power coupling to the plasma
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Reprints

Reprints of this and other PEGASUS presentations 
are available online at

http://pegasus.ep.wisc.edu/Technical_Reports


