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Local Helicity Injection (LHI) Provides Robust

Non-Solenoidal Startup on the PEGASUS ST
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Global Helicity Balance and Taylor Relaxation Limits I

 Relaxation and current drive occur as a result of global helicity balance:
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Two Configurations of LHI Investigated in Pegasus

Low-Field Side (LFS) Injection High-Field Side (HES) Injection
e 3-Injector set near outboard midplane « 2-Injector set in lower divertor region
— Poloidal field induction dominated; mostly Taylor — Helicity drive ¢/,,,;) dominated7,, limited by helicity
limited drive
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LC{)J HFS LHI Has Been the Focus of Recent Experiments

* [, (t) dominated by helicity current drive with
minimal inductive contributions

— Close to regimes expected at larger scale (e.§XN9) 0.20F .
—— Plasma Current
— Injected Current
* [,~0.2 MAachieved with V;,; as majority drive 0.15f .
— Inductive drive ~ 0 <§?
—  Similar plasma performance to LFS LHI; stochadstises do €  0.10} i
not dramatically impact performance g
o
: 0.05F .
 Issues and questions for HFS LHI startup 94883
— Relaxation to tokamak more challenging
: N 0.00 ! ! I
— Higher PMI susceptibility at low,,; 15 0 o5 30
— Tighter plasma shape requirements Time [ms]
—  Confinement and dissipation properties not wetlarstood - Example highest achievablgvia

_ o _ _ HFS-only LHI
— Relation of MHD activity to current drive mechamis
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(6{3> Relaxation of Injected Current Streams Forms Tokamak-Like Plasma

* Rapid I, growth occurs

e Streams must maintain clearance of Injected current weakens B, and enable

injector structures reconnection
* Helicity conserving instabilities redistribute
current
Ip ~ Nturns Iinj Ip < Nturns Iinj Ip >> Nturns Iinj
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(ﬁ?@) Conflicting Requirements for Relaxation at Low Ry;

Sufficient Clearance Insufficient Clearance

« HFS injectors are toroidally staggered; each
current stream must clear opposite injector

 Relaxation for HFS injection results from null
formation in the vertical field at midplane:

|Bz,vac _ Bz,relax| > 038

BZ,'UClC

« Astoroidal field increases, stronger vertical 3.0r
field is needed to maintain correct pitch s [
_.g 2.0F
Z |
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Experiments show greatly reduced I, when e Coupling to plasma for HFS injection

plasma edge Is not near injectors requires injectors outside of foot of plasma
250 . . . 0.8 T I TN T I I
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- Effects of good and bad coupling of the HFS injectors to the - Field line trajectories from two injector locations

plasma. Green line: time point with eqlig);,
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Increased PMI on Injector Surfaces Observed in HFS LHI at

Full B

 Cathode spots occur at a critical electric
field at the injector surface:

Vinj
- E~ ADe > Ecrit

— Need to minimizen, at bias surfaces

 High B in divertor region leads to tight
clearance of toroidal transits

— Increases, near cathode due to presence of beam

— Potential for surface heating, lowerifg-;;

* High Bgyiqe (~B7r) may concentrate local
n. and lower E_,.;+
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LFS to HFS Injection Handoff Presents Many Benefits to HFS

Operation

« Removes relaxation requirement for HFS LHI

 Poloidal induction utilized for initial growth of I,
* Reduced need for high I;,; and V. early in HFS phase leads to less PMI

 Coupling of helicity directly to a relaxed plasma allows for a higher vertical field

— Additional stream clearance gained from incredisddl and from plasma shape

« Proof-of-concept for switching helicity injection sources mid-shot
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90 kA discharge established using LFS
Injection system

Plasma Current [MA]

LFS plasma decouples from injectors
and moves inboard and elongation
Increases

inj [V]

HFS injection system couples to this
target plasma and drives current to
> 0.2 MA
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69) Thomson Scattering Profiles Show Strong Peaking of T, and n,

In Handoff Discharges
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Redistribution of Power in Magnetic Fluctuation Spectra

Between LFS and HFS LHI

* Insertable Mirnov array probe used to
measure magnetic fluctuations (6B,) In
edge and SOL

MHz

 Edge magnetic spectral content changes ms
I I - Sonogram of inner-most probe spatial channel gjinout the duration of the
abruptly around SWItCh in LHI SyStemS discharge. Green: HFS gas start; Blue: HFS art, $tmte: HFS bias start
— HFS phase shows higher power at low frequencies, 6 , , , ,

—— LFS Phase (20-21 ms)

and overall less broadband
—— HFS Phase (28-29 ms)

e Presence of HFS arc streams reduces
amplitude of fluctuations in LFS plasma
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- Autopowers of probe ch.1 at representative timegsarf LFS and HFS phases
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Plasma Current in LHI Dominated Discharges Shows Linear

Scaling with LHI Drive

Handoff discharges fit trend of HFS-only data

 Plotting I, vs geometry-normalized ool ¢ B2 | adts |
AiniVini | & Bsorew
VLHI (E VTlOT‘Tfl — ”;J %nj) ShOWS genera”y E E'Foéig-LOF?Handoffmoo%) :
inj 0.15| .
linear trend )
% 0.10 -
e LFS to HFS handoff shots fit trend of full TF 00s| .
discharges .
0'00?)” 1 2 3 4 5
Geometry-Normalized V|
« HFS LHI experiments conducted with static Linear Scaling of I, with V.-, for static geometry
geometry and I, to isolate effects of V', 200 - - -
_ VIND ~0 B 150} Yo'\ -
= 100} o l
- 50F & -
* Linear scaling of I, with v, ... observed ) | | .
0] 1 2 3 4

— Validation needed for extended pulse duration a5
Vnorm = Ainjvinj / I:‘)‘inj [V_m:”
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. Existing scaling laws may be useful to bracket LHI
—  Ohmic: stable flux surfaces throughout; most osim

—  Stochastic: broken flux surfaces throughout; pmeissic

. Linear scaling of I,, consistent with either extreme for
specific hypotheses

—  ohmic confinement foE ¢ ~1,,

: : 8h
—  stochastic confinement fellgi~VLH,

. 2-zone confinement model may be useful
—  Stochastic, poor confinement in edge with unstaebieent streams

—  Ohmic-like transport in more quiescent core plasma

. Initial data suggests poor edge, decent core
—  FlatP,(r) at edge with largs,

—  Peaked.,(r) in core region

A.T. Rhodes, APS-DPP 2018
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Distinct MHD Regimes Observed in HFS LHI
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- Top: Plasma current and outboard Mirnov signals
illustrating MHD transition (Red — with; Black — wiblit)

- Bottom: Mirnov signal autopower showing n=1 redugtio m
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(éa) Transient MHD Transitions in Handoff Experiments Indicate

Threshold Behavior

0.24F | | | I | | ]
e Conditions for this transition have been [ '
L. 020 -
empirically bounded by < i
; = 016} -
p -
Irp = 0.8 0.12F -
10
e Short MHD transition events observed In < 51 -
handoff discharges T . 3
(@)
— Typical peaklli = (.7, close to empirical o c
TF 5 |
threshold .
10 | | | L | |
25 26 27 28 29 30 31 32

Time [ms]

 Considering plasma conditions that may
lead to line-tied kink stabilization
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HFS Injection at Decreased Major Radius Impeded by

Shaping Limitations

« Scaling of V|, indicates increased drive
as injectors move inboard

AinjVinj

- VLHI ~ Rinj

Z [m]

* Experiments at R;,; = 17.5 cm
encountered geometry obstacles

— Location of lowest-z point of plasma must be
inboard and below injector position

— Field shaping colils in Pegasus liRi;; in~21 cm

R [m]

- Predictive equilibrium of strongest available
shaping with Pegasus coils.

TTTTTTTTTTTTT
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* Due to limitations on R;;,; and Vi,
Increasing A;,; presents most promising
near term path to higher performance

« Two 6-8 cm? aperture injectors currently
being designed based on 4 cm? designs

« Limits on increasing A;,; further:

— Arc plasma eventually becomes hollow
— Less effective coupling to plasma

A.T. Rhodes, APS-DPP 2018
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63 Advanced Injector Shapes to Provide Access to High Performance

with LFS LHI

Design of a high A;,;, low w;,; injector is
underway for LFS LHI

— Increased;,; capability while maintaining lowy;,,; to
increase Taylor limit

—  LargeA;,; allows for lowV;,; operation

* Injector shape conforms to flux surfaces to
improve coupling

* Active gas feedback control to balance I;,; and
Vinj

- CAD model of new
LFS injector utilizing
high A, and low wy,

 Anode fueling to improve arc stability

*  Programmable V;,;(t) for plasma evolution
control
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) Conclusions and Future Work

« Handoff between the two helicity injection systems in Pegasus has achieved reliable,
high performance operation at I, > 0.2 MA

— Conceptual validation of transferring current drbetween multiple helicity injection systems

 Transient MHD transition at full B suggests threshold behavior

— Understanding and controlling transition may emeazurrent drive efficiency

 Confinement scaling models offer several options to describe I,vs Vg

— Data hints at different core/edge behavior

« Further optimization of injector geometry to improve performance of LHI
— Larger area injectors to incredsg;,
— Advanced injector shapes to increase Taylor land improve power coupling to the plasma
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% Non-Solenoidal Startup in the
Pegasus ST



% Challenges of Helicity Injection at
Low Ry,




% LFS to HFS Handoff at Full
Toroidal Field



% Characterization of Current
Scaling in LHI




@ Paths to Improved Startup Using
Hal



Reprints

Reprints of this and other PEGASUS presentations
are available online at

http://pegasus.ep.wisc.edu/Technical Reports
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