

Equilibrium & Stability Analysis of Pegasus Plasmas

A. Sontag for the Pegasus Team

43rd Annual Meeting of the Division of Plasma Physics Long Beach, California

October 30, 2001

Overview

Equilibrium analysis with new code

- Grad-Shafranov solver coupled to Levenberg-Marquardt least squares fit
- robust & flexible, at expense of speed

Implementation

- wall current modeling
- uncertainty analysis

OH plasma characteristics

- high- β , low-A plasmas accessed
- MHD

large 2/1 modes with low central shear external kink modes at higher I_p

Equilibrium Analysis Accounts for Induced Wall Currents

• $I_{wall} > I_{plasma}$ throughout shot

- large dipoles are most significant

Applied field must balance wall field

- necessary for breakdown and radial position control

Wall Currents are Fit by Equilibrium Code

Wall modeled as 91 current filaments

• Filaments grouped into coil packs

coil pack currents are fit by equilibrium code

 Coil pack currents constrained via wall-mounted flux loops

- dome and outer wall most significant

- 2 loops on dome, 1 on outer wall

Addition of Magnetic Diagnostics

Current Magnetics Arrangement

Not shown:

- Plasma Rogowski Coils (2)
- Diamagnetic Loops (2)
- Diamagnetic Compensation Loop
- Internal Btan Coils (15) [constrain wall currents]

Before Upgrade

- Poloidal Mirnov Coils (13)

- Flux Loops (6) Total (19)

After Upgrade

Flux Loops (26)

Poloidal Mirnov Coils (22 + 21)

LFS Toroidal Mirnov Coils (6)

HFS Toroidal Mirnov Coils (7)

◆ External Wall Loops (6)

Total (88)

Equilibrium Accuracy Increased with Upgraded Magnetics

• Upgraded magnetics provide good constraint

- Monte Carlo analysis to estimate fit parameter uncertainty

Equilibrium Reconstruction Shows High β_t for Fully Formed Plasmas

Shot 13064

151.4 kA I_p R_0 0.305 m 0.249 m a 1.22 Α 1.8 κ B_t (axis) 0.1 T 16% β_t 0.35 lį 2.8 q_0 6.2 **q**95

> Rogowski Coil 15 Flux Loops 3 B_p Coils Diamagnetic Loop

High Elongation Observed During Current Ramp

Growth of Large Tearing Mode Correlates with q₀ Behavior

- Growth of 2/1 mode observed soon after q₀ passes through 2
 - often appears to constrain discharge evolution
- q₀ constrained by equilibrium fit to external magnetics
 - 2D SXR camera will provide better constraint

 Broad low-shear region gives mode large radial extent

^{*} RP1.034 MHD Activity and Analysis at Near-Unity Aspect Ratio in Pegasus G. Garstka, et al.

q₉₅ Behavior and DCON Analysis Suggest Edge Kink Mode

- 2/1 suppressed by large I_p and increased V-s
- free boundary energy \rightarrow 0 as q₉₅ \rightarrow 5
- disruption immediately follows

Low-A Stability Limits Under Investigation with DCON

• Edge kink limits currently being explored

-
$$q_a$$
 limit expected to increase as $A \rightarrow 1$
 $q_{95}/q_0 > 2$ is high-A limit (Sykes-Wesson)

• First scan gives $q_{95}/q_0 > 3$ as limit

- Constraints:

$$I_p = 120 \text{ kA}$$

$$R_0 = 35 \text{ cm}$$

$$q_0 > 1$$

$$\beta_t < 0.5\%$$

$$A \sim 1.15$$

• More extensive scan in progress

Summary

- Equilibrium analysis is an essential tool for Pegasus
 - -1_i , β , q_a , q_0 , etc.
 - input to stability codes

- Pegasus has entered designed operational regime
 - high- β , high- κ achieved

- Tearing modes and external kinks encountered
 - theoretical exploration of parameter space begun