H-mode and ELM Dynamics Studies at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUS-Upgrade

M.W. Bongard

18th International Spherical Torus Workshop
PPPL
Princeton, NJ
November 3, 2015
H-mode Readily Accessed in A ~ 1 \text{ PEGASUS ST}

\begin{itemize}
 \item Low B_T at A \sim 1 \rightarrow \text{low H-mode } P_{\text{LH}}
 \begin{itemize}
 \item P_{\text{OH}} >> P_{\text{ITPA08}} \sim B_T^{0.80} n_e^{0.72} S^{0.94}
 \item Limited or diverted topology
 \item Facilitated by HFS fueling
 \end{itemize}
 \item Standard H-mode features observed
 \begin{itemize}
 \item Unique edge diagnostic access
 \end{itemize}
\end{itemize}

\begin{center}
\begin{tabular}{|c|c|c|}
 \hline
 Wall Type & SS + Ti getter & SS + Ti getter \\
 \hline
 \hline
 \textbf{PEGASUS Toroidal Experiment} & & \\
 A & 1.15 – 1.3 & \\
 R (m) & 0.2 – 0.45 & \\
 I_p (MA) & \leq 0.25 & \\
 B_T (T) & < 0.2 & \\
 \Delta \tau_{\text{shot}} (s) & \leq 0.025 & \\
 \hline
\end{tabular}
\end{center}

\textit{Fast visible imaging, } \Delta t \sim 30 \mu s
Edge Pedestals Present Between ELMs in H-mode

- Short pulse, low edge T_e permit detailed edge measurements
 - $J_\phi(R,t)$ via multichannel Hall probe1,2
 - High spatial, temporal resolution
 - $p(R)$ via triple Langmuir probe
 - Single point, high temporal resolution

- Clear current pedestal observed
 - $L \rightarrow H$ scale lengths: $4 \rightarrow 2$ cm

- Multi-shot Langmuir probe scans indicate pressure pedestal
 - Some edge distortion present from MHD

Energy Confinement Improves in H-mode

- Equilibrium reconstructions yield τ_e
 \[
 \tau_e = \frac{W_K}{P_{in} - dW/dt - P_{rad}}
 \]
 - Challenges: short pulse, MHD, $I_{wall}(t)$
 - Significant dW/dt

- $W_K(\tau_e)$ increases after L-H transition

- H_{98} increases from 0.5 to 1.0

- Ongoing: virial analysis for fast τ_e

M.W. Bongard, ISTW 2015
Full Virial Analysis is Required as $A \to 1$

- Technique gives magnetics based β_p, W_K, and τ_e\(^1\)

\[
\beta_p = \frac{S_1}{2} + \frac{S_2}{2}(1 - R_T/R_0) + \mu
\]

\[
W_K = -\frac{3}{2} \beta_p \frac{B_{pa}^2 \Omega}{2 \mu_0}
\]

\[
\mu_{\text{expt}} = \frac{4\pi B_{T0} R_0 \Delta \phi}{B_{pa}^2 \Omega}
\]

- Model equilibria at varied A, β_p highlight breakdown of high-A approximations
 - $\beta_{p,\text{circ}} = 1 + \mu$ significantly overestimates $W_K(\tau_e)$ in paramagnetic regime

- Developing fast boundary reconstruction code to provide full treatment at $A \sim 1$

\[^1\] Lao et al., Nucl. Fusion 25, 1421 (1985)
\(P_{LH} \) Measurements Extended to A \(\sim 1.2 \) in PEGASUS

- Vary \(P_{OH} \) with power scan
 - Transition time from \(\phi_D \) bifurcation
 - Wide parameter range
 - \(P_{OH} = 0.1 - 0.6 \) MW
 - \(n_e = 0.5 - 4 \times 10^{19} \, m^{-3} \)
 - Inner wall limited
 - Diverted: USN (favorable \(\nabla B \))

- \(P_{LH, \text{exp}} = P_{OH} - dW/dt \)
 - \(dW/dt \) from magnetic reconstructions
 - \(\sim 30\% \) correction

\[\text{Limited USN Diverted} \]

\[\text{SN 73580} \]
\[t = 0.0248 \, s \]

\[\text{SN 70914} \]
\[t = 0.02425 \, s \]

M.W. Bongard, ISTW 2015
\(P_{LH} \) Consistent with Global Parametric Scalings—But Differences Arising at Low A

- \(P_{LH}(n_e) \) consistent with ITPA scaling
 - FM\(^3\) model\(^1\): minimum \(P_{LH}(n_e) \approx 1 \times 10^{18} \) m\(^{-3}\)

- Magnetic topology independence
 - Diverted, limited edge topology similar
 - FM\(^3\): \(P_{LH}^{LIM} / P_{LH}^{DIV} \approx (q_{\psi}^{LIM} / q_{\psi}^{DIV})^{-7/9} \)

\(M.W. \) Bongard, ISTW 2015

\(^1\) Fundamenski et al., Nucl. Fusion 52, 062003 (2012)
At Low A, $P_{\text{LH}} \gg P_{\text{ITPA08}}$

- P_{LH} increasingly diverges from expectations as $A \to 1$
 - \text{PEGASUS} $P_{\text{LH}} / P_{\text{ITPA08}} \geq 10$–$20$
 - Confirms trend from NSTX, MAST

- Discrepancy may hint at additional physics

1 Maingi \textit{et al.}, Nucl. Fusion \textbf{50}, 064010 (2010)

\textit{M.W. Bongard, ISTW 2015}
• Filament structures observed
 – Coincident with D_α bursts

• Small (“Type III”) ELMs
 ubiquitous, less perturbing
 – $P_{OH} \sim P_{LH}$
 – Low n

• Large (“Type I”) ELMs
 infrequent, violent
 – $P_{OH} \gg P_{LH}$
 – Intermediate n
 – Can cause H-L back-transition

M.W. Bongard, ISTW 2015
• Simultaneously unstable toroidal modes present during ELM
 – Detectable only within ~ cm of LCFS
 – Nonlinear energy exchange

• Complex, multimodal $J_{\text{edge}}(R, t)$ collapse
 – High $\Delta t \sim 6 \mu$s through single large ELM
 – Current filament ejection

• **Challenge:** studies of nonlinear ELM dynamics at Alfvénic timescales

M.W. Bongard, ISTW 2015
Results Motivate PEGASUS-U Upgrade Proposal

- New centerstack assembly
 - OH solenoid via PPPL collaboration
 - $\Delta \Phi_{OH}: 40 \rightarrow 170 \text{ mV-s}$
 - TF bundle: $0.15 \rightarrow 0.40 \text{ T}$
 - Pulse length: $15 \rightarrow 50\text{–}100 \text{ ms}$

- Power system, control upgrades
 - New TF power supply
 - $I_{TF} \times 3\text{–}4$
 - Upgraded OH power supply
 - Improved V_{loop} control

- Comprehensive 3D-Magnetic Perturbation System

- Longer-term: ECH auxiliary heating
 - In discussion with ORNL

M.W. Bongard, ISTW 2015
Nonlinear pedestal and ELM studies
- Simultaneous measurements of $p(R,t)$, $J(R,t)$, $v_\phi(R,t)$
 - New edge diagnostics (probe arrays, DNB)
 - Tests of Sauter neoclassical bootstrap model

ELM Modification and Mitigation
- Novel 3D-MP coil array
 - LFS array: 12 toroidal \times 7 poloidal
 - Helically-wound HFS coils
- LHI current injectors in divertor, LFS regions

Physics of Local Helicity Injection Startup1
- High I_p, long-pulse startup
- Projections to NSTX-U

1 J.A. Reusch, Session O6, Friday
Unique Studies of H-mode Physics at $A \sim 1$

- H-mode plasmas with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_α; increased τ_e; $H_{98} \sim 1$

- Features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Insensitivity to magnetic topology

- Operating regime allows detailed ELM studies
 - Nonlinear ELM dynamics on Alfvénic timescales

- PEGASUS-U planned to address critical physics, technology issues
 - Nonlinear ELM, pedestal physics with local edge diagnostics
 - Comprehensive 3D-MP and J_{edge} injection for ELM mitigation / control
 - Tests of LHI at NSTX-U relevant field, pulse length
3D-Magnetic Perturbation System Proposed

- Design study, fabrication as proposed work

- Comprehensive 3D-MP system
 - LFS coils, spaced with ~equal-PEST angle from model equilibria
 - 12 toroidal x 7 poloidal array
 - Initial DC power systems for n=3 control
 - HFS 4-fold helical coil set

- Uniqueness
 - Wide spectral range
 - Local pedestal plasma response measurements

M.W. Bongard, ISTW 2015
• Local helicity injection system provides 3D SOL current injection
 \(I_{\text{inj}} \leq 5 \text{ kA} \), \(J_{\text{inj}} \sim 1 \text{ kA/cm}^2 \)

• LHI use with H-mode studies
 – Pulse extension and J(R) control

• LHI system affects edge plasma
 – Strong 3D edge current perturbation
 • Similar to LHCD on EAST\(^1\)
 – Edge biasing to modify rotation profiles

Pegasus-U LHI Injector Configuration

- Four, large-A_{inj} injectors
 - $2 \text{ cm}^2 \rightarrow 4 \text{ cm}^2$
 - LFS, HFS locations
 - Modest P/S devel. for long-pulse
 - e.g. cathode-spot quench interrupter circuit

- Supports confinement, scaling studies for NSTX-U

(a) Present injector cross-section; (b) proposed new injector design.

M.W. Bongard, ISTW 2015
Ohmic H-mode Plasmas Have Standard Signatures

- Quiescent edge
 - Edge current, pressure pedestals
- Reduced D_α emission
- Large and small ELMs
- Bifurcation in ϕ_D
 - Correlates with improving τ_e

M.W. Bongard, ISTW 2015