Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

M.W. BONGARD, G.M. BODNER, M.G. BURKE, R.J. FONCK, J.L. PACHICANO, J.M. PERRY, C. PIERREN, N.J. RICHNER, C. RODRIGUEZ SANCHEZ, D.J. SCHLOSSBERG, J.A. REUSCH, J.D. WEBERSKI, University of Wisconsin-Madison — Research on the $A \sim 1.2$ Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with $I_p \leq 200$ kA, $\Delta t_{\text{pulse}} \sim 20$ ms and $B_T \leq 0.15$ T are produced to date, sustained by two injectors with $A_{\text{inj}} = 4$ cm2, $V_{\text{inj}} \sim 1.5$ kV, and $I_{\text{inj}} \sim 8$ kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with $T_i \geq T_e \geq 50 - 100$ eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized I_p, and suggesting short-wavelength modes may relate to the current drive mechanism. The high $I_N \geq 10$, ion heating, and low ℓ_i driven by LHI, and the favorable stability of $A \sim 1$ STs allows access to record $\beta_l \sim 100\%$ and high $\beta_N \sim 6.5$. Such high-β_l plasmas have a minimum $|B|$ well spanning $\sim 50\%$ of the plasma volume. Enhancements to the Pegasus facility are considered to increase B_T towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive.

Abstract

1Work supported by US DOE grant DE-FG02-96ER54375.

Michael Bongard
mbongard@wisc.edu

University of Wisconsin-Madison

Special instructions: Please place as poster 1 in the Pegasus posters.

Date submitted: 13 Jul 2017

Electronic form version 1.4