Progress Toward a New Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

M.R. BAKKEN, M.G. BURKE, R.J. FONCK, B.T. LEWICKI, M.M. LIBEN, D.S. THOMPSON, G.R. WINZ, University of Wisconsin - Madison, Madison, WI — A new diagnostic measuring local $E_z(r,t)$ fluctuations is being developed at the Pegasus Toroidal Experiment. A novel multiple volume phase holographic grating spectrometer, designed to have high resolution (0.25˚A) and high étendue ($U = 0.01 \text{cm}^2\text{-ster}$), measures the line separation of the π components of the H_α motional Stark spectrum of emitted beam light. The spectra are recorded at high frequency ($f_{Ny} \approx 500 \text{kHz}$) by a high speed CMOS imaging detector. The groove density of the objective grating is varied linearly along its surface to counter geometric Doppler broadening. A low divergence ($\Omega \approx 0.5^\circ$), 80kV, 2.5A H^0 diagnostic neutral beam is being deployed on Pegasus. The beam uses a washer-stack arc ion source to maximize full energy species fraction in the injected neutral beam. Laboratory tests of the ion source demonstrate stable, repeatable plasmas with $T_e \leq 20 \text{eV}$ and $n_e \approx 5 \times 10^{17} \text{m}^{-3}$, sufficient to sustain a 6mA/cm² current density at the focal plane for up to 20ms. A three phase resonant converter power supply, with low amplitude ($\delta V/80\text{kV} \approx 0.05\%$), high frequency ($f_{rip} \approx 280 \text{kHz}$) ripple, is in development to provide the 80kV accelerator power.

1This research supported by US D.O.E. Grant DE-FG02-89ER53296