Design of the Thomson Scattering Diagnostic on the Pegasus Toroidal Experiment

D.J. SCHLOSSBERG, R.J. FONCK, B.A. KUJAK-FORD, B.T. LEWICKI, J.I. MORITZ, University of Wisconsin-Madison — A critical question concerning use of point-source helicity injection for non-inductive startup is whether, as \(I_p \) increases, energy confinement is dominated by cross-field transport or by parallel losses due to field line stochasticity. Furthermore, resistively-driven helicity dissipation during plasma formation must be characterized. Both of these topics are important for predictive scaling to larger tokamaks. In addition, \(T_e \) and \(n_e \) profiles are needed for accurate magnetic equilibrium reconstructions at high \(\beta_T \) and \(I_N \). To resolve these issues, a Thomson scattering diagnostic is being developed for the PEGASUS Toroidal experiment. The design is guided by systems on MST\(^2\) and HSX.\(^3\) Scattered light from an incident Nd-YAG laser (\(\lambda = 1064 \) nm) will be detected by a polychromator system. Implementation on Pegasus will measure \(n_e \) and \(T_e \) at \(\geq 10 \) radial locations for plasmas with \(n_e \geq 10^{19} \text{ m}^{-3} \) and \(T_e \sim 10 \text{ eV} - 1 \text{ keV} \), with radial resolutions of \(\sim 1.75 \text{ cm} \) and \(5 \text{ cm} \) for fine and coarse configurations, respectively.

\(^1\)Work supported by US DOE Grant DE-FG02-96ER54375.
\(^3\)K. Zhai, et al. RSI 75, 10 (2004)