Overview of Non-Solenoidal Startup Studies in the Pegasus ST

M.W. Bongard,
J.L. Barr, G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry,
J.A. Reusch, N.J. Richner, C. Rodriguez Sanchez, D.J. Schlossberg
Non-Solenoidal Startup via Local Helicity Injection

Local Helicity Injection (LHI) Provides Robust Non-Solenoidal Startup on the PEGASUS ST

LHI Startup Scenarios Grow From Helical Current Streams to Quality, High I_p Plasmas

High-Field-Side (Divertor) Injection Experiments Provide Confinement Tests & Higher I_p

Hierarchy of Physics Models Provide a Predictive Understanding for LHI Startup

Technology and Diagnostic Development

Three HFS Injection Systems Implemented and Tested Since April 2016

Multi-Year Technology Development has Produced Robust, High Performance Current Injectors

Large-A_e Injector Design Provides Enhanced Performance, Simplified Geometry

0-D Power Balance Model Used to Explore Projections for NSTX-U Startup

Thomson Scattering Enhancements to Measure T_e and n_e Profiles During LHI

0-D Power Balance Model Provides Predictive Tool for $I_p(t)$

Equilibrium-Calibrated Inductance Model Improves Estimates of Non-Solenoidal V_{IND}

Different MHD Activity Observed Between LFS and HFS Injection Geometry

Progress Toward Predictive Models of LHI

Power Balance Model Provides Predictive Tool for $I_p(t)$

Analytic Formulation of Power Balance Model Elements Allow Partitioning of Energy Flow

Equilibrium-Driven Ion Heating Gives $T_e > T_i$ During LHI

Reconnection-Driven Ion Heating as Drive Mechanism

Current Stream Interaction Manifests as Edge-Localized MHD Burst

Reconnection-Driven Ion Heating Gives $T_i > 100$ eV

Different MHD Activity Observed During LHI

2016 Helicity Injection Campaign Highlights

LFS Local Helicity Injection Produces Core $T_e > 100$ eV

$T_e (R, t)$ Remains Peaked for LFS Injection Geometry and Minimal V_{IND}

Technical Challenges Arise for LHI Startup With HFS Injection Geometry

LHI Provides Access to High-β_t at $A \sim 1$ With Non-Solenoidal Sustainment and Anomalous Ion Heating

Poloidal Field Shaping Facilitates Relaxation at Full Toroidal Field ($B(t) = 0.23$ T)

Progress in Non-Solenoidal Startup on Pegasus

Reprints

M.W. Bongard, APS-DPP 2016
Non-Solenoidal Startup via Local Helicity Injection
Progress Toward Predictive Models of LHI
2016 Helicity Injection Campaign Highlights
Local Helicity Injection (LHI) Provides Robust Non-Solenoidal Startup on the PEGASUS ST

Ip ≤ 0.18 MA via LHI (I_{inj} = 5 kA)

Plasma Parameters
- \(I_p \leq 0.23 \) MA
- \(\tau_{shot} \leq 0.025 \) s
- \(B_T \) = 0.15 T
- \(A \) = 1.15–1.3
- \(R \) = 0.2–0.45 m
- \(a \) ≤ 0.4 m
- \(\kappa \) = 1.4–3.7

Injector Parameters
- \(\sum I_{inj} \leq 14 \) kA
- \(I_{inj} \leq 4 \) kA
- \(V_{inj} \leq 2.5 \) kV
- \(N_{inj} \leq 4 \)
- \(A_{inj} = 2-4 \) cm²
- \(I_{arc} \leq 4 \) kA
- \(V_{arc} \leq 0.5 \) kV

M.W. Bongard, APS-DPP 2016
LHI Startup Scenarios Grow From Helical Current Streams to Quality, High I_p Plasmas

Three-Injector Array

Unstable injected current streams

Null Formation

Relaxation

Reconnect, relax to Tokamak-like state

Injector Shutoff

Subsequent OH-Driven Tokamak

M.W. Bongard, APS-DPP 2016
High-Field-Side (Divertor) Injection Experiments Provide Confinement Tests & Higher I_p

- Initial HFS injector campaign in progress
 - Development to minimize PMI as B_{TF} increases
- Configuration minimizes V_{IND}
- 3-4x increase in HI drive: $V_{eff} \sim A_{inj} V_{inj}/R_{inj}$
- Test reconnection mechanisms at higher I_p, B_{TF}
- Injectors at longer pulse, high-B_{TF}

NSTX-U Projected Performance:

- Ohmic L-mode
- Fixed $T_e = 150$ eV
- R-R Stochastic
- Fixed $T_e = 75$ eV

Normalized V_{LHI}: $A_{inj} V_{inj}/R_{inj}$ [V-m]

M.W. Bongard, APS-DPP 2016
Hierarchy of Physics Models Provide a Predictive Understanding for LHI Startup

1. Taylor relaxation, helicity conservation
 - Steady-state maximum I_p limits
 \[
 I_p \leq I_{TL} \sim \sqrt{\frac{I_{TF} I_{inj}}{W}}
 \]

2. 0-D power-balance $I_p(t)$
 - V_{LHI} for effective LHI current drive
 \[
 I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0; \quad I_p \leq I_{TL}
 \]

3. 3D Resistive MHD (NIMROD)
 - Physics of LHI current drive mechanism
Three HFS Injection Systems Implemented and Tested Since April 2016

- Two injectors at toroidally opposite positions in lower divertor region

- Design point leverages high A_{inj}
 - $3-4\times$ increase in V_{LHI} over prior systems
 - $A_{\text{inj}} = 8 \text{ cm}^2$ total
 - $V_{\text{inj}} \leq 1.2 \text{ kV}$
 - $I_{\text{inj}} \geq 8 \text{ kA}$ total

- Systems vary $R_{\text{inj}}, Z_{\text{inj}},$ local limiter geometry
 - Latest design incorporates floating, electropolished divertor shield plates
Multi-Year Technology Development has Produced Robust, High Performance Current Injectors

- Washer-stack arc source:
 - $J_{\text{inj}} \sim 1\text{kA/cm}^2$

- High-voltage in SOL: $V_{\text{inj}} > 1\text{kV}$
 - Frustum cathode
 - Floating cathode shield

- PMI control: 1-2 cm from LCFS
 - Cascaded shield rings
 - Local limiter
 - Mo, W PFCs

M.W. Bongard, APS-DPP 2016
Large-$$A_{\text{inj}}$$ Injector Design Provides Enhanced Performance, Simplified Geometry

- New injectors designed for HFS system
 - Doubled $$A_{\text{inj}}$$ (2 cm2 → 4 cm2)
 - Compact design for lower divertor region

- Modular internal assembly
 - Permits in-vessel maintenance/repositioning
 - Exterior PFC components rapidly adjusted about common arc chamber / fueling system
 - Changes to $$A_{\text{inj}}$$, shield structures
 - Integrated hypodermic gas feed alleviates field sensitivity from previous

- Refractory materials for resilience to harsh environment
 - W for high-$$V_{\text{inj}}$$ cathode/anode
 - Mo for external shield assemblies

New: 4 cm2 Old: 2 cm2
Thomson Scattering Enhancements to Measure T_e and n_e Profiles During LHI

- **Improved timing / synchronization**
 - Higher realized laser power
 - Lowered beam scrape-off losses

- **System automation**
 - Intra-shot beam alignment
 - Data acquisition

- **Stray light mitigation**
 - Baffling, electronic gating

- **Background signal reduction**
 - Wire grid polarizers
 - High speed shutters

Thomson Viewing Locations and $A \sim 1$ Plasma

M.W. Bongard, APS-DPP 2016
Power Balance Model Provides Predictive Tool for $I_p(t)$

\[I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0 \]

- V_{LHI}: effective drive
- V_{IR}: resistive dissipation
- V_{IND}: analytic, from shape(t)
- Taylor relaxation limit: $I_p \leq I_{TL}$

\[
\begin{align*}
I_p & \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0 \\
\end{align*}
\]

- Model reasonably recreates $I_p(t)$

\[
\begin{align*}
\text{Taylor} & \quad \text{LHI Drive Limited} \\
\end{align*}
\]

\[
\begin{align*}
\langle T_e \rangle &= 60 \text{eV} \\
\end{align*}
\]

- V_{IND} dominates current drive with LFS mid-plane injection

\[
\begin{align*}
\end{align*}
\]

M.W. Bongard, APS-DPP 2016

Eidietis et al., J. Fusion Energ. 26, 43 (2007)
Battaglia et al., Nucl. Fusion 51, 073029 (2011)
Analytic Formulation of Power Balance Model

Elements Allow Partitioning of Energy Flow

\[I_p \left[V_{PF} + V_{geo} - V_{Wm} - V_{IR} + V_{LHI} \right] = 0 \]

- Recent Improvements
 - Revised \(L_p, B_z \) models*
 - Moving plasma boundary
 - Neoclassical resistivity

\[V_{PF} = -\sum_{\text{coils}} \frac{d}{dt} \left[\psi_{PF} \right] \approx -\frac{\partial}{\partial t} \left[M_V \pi R_0^2 B_V \right] \]

\[B_v = -\frac{\mu_0 I_p}{4\pi R_0} \left\{ \frac{1}{\mu_0} \frac{\partial L_e}{\partial R} + \frac{\ell_i}{2} + \beta_p - \frac{1}{2} \right\} \]

\[M_V(\varepsilon, \kappa) = \frac{(1-\varepsilon)^2}{(1-\varepsilon)^2 c(\varepsilon) + d(\varepsilon)\sqrt{\kappa}} \]

\[c(\varepsilon) = 1 + 0.98\varepsilon^2 + 0.49\varepsilon^4 + 1.47\varepsilon^6 \]

\[d(\varepsilon) = 0.25\varepsilon(1 + 0.84\varepsilon - 1.44\varepsilon^2) \]

\[V_{geo} = -\frac{d}{dt} \left[L_e I_p \right] = -L_e \frac{dI_p}{dt} - I_p \frac{dL_e}{dt} \]

\[a(\varepsilon) = \left(1 + 1.81\sqrt{\varepsilon} + 2.05\varepsilon \right) \ln \left(\frac{8}{\varepsilon} \right) - \left(2.0 + 9.25\sqrt{\varepsilon} + 1.21\varepsilon \right) \]

\[b(\varepsilon) = 0.73\sqrt{\varepsilon} \left(1 + 2\varepsilon^4 - 6\varepsilon^5 + 3.7\varepsilon^6 \right) \]

\[L_e = \mu_0 R_0 \frac{a(\varepsilon)(1-\varepsilon)}{1-\varepsilon + \kappa b(\varepsilon)} \]

\[\chi = \frac{C_p^2 L_i}{\mu_0 V_p} \]

\[V_{LHI} = \frac{A_{inj} B_{\varphi,inj}}{\Psi} V_{inj} \]

\[V_{IR} = I_p R_p = I_p \left(\frac{\langle \eta \rangle 2\pi R_0}{A_p} \right) \]

\[V_{Wm} \approx -\frac{1}{I_p} \frac{d}{dt} \left(\frac{1}{2} L_i I_p^2 \right) \]

S. Ejima et al 1982 Nucl. Fusion 22 1313
J.A. Romero and JET-EFDA Contributors 2010 Nucl. Fusion 50 115002

M.W. Bongard, APS-DPP 2016
Equilibrium-Calibrated Inductance Model Improves Estimates of Non-Solenoidal V_{IND}

- Maintaining radial force balance provides V_{IND}
 - Originally calculated via H-N formulae

- Important to quantify contributions from shape, PF drive in LHI system design

- Model equilibrium database generated to test analytic formulae in realistic magnetic geometries
 - $N = 331$; $1.15 < A < 8$; $1 < \kappa < 3$
 - $0 < \beta_p < 1$; $0.2 < \ell_i < 0.75$

- Poor partitioning of V_{IND} between shape, V_{PF} components found
 - However, total flux estimates in better agreement

- Revised V_{IND} model developed
 - Derived new coefficients in H-N formalism via fit to equilibrium database
 - Weak dependence on β_p, ℓ_i introduced
0-D Power Balance Model Used to Explore Projections for NSTX-U Startup

- Helicity dissipation (V_{IR}) dependent on T_e, realized electron confinement

- Importance of V_{LHI}, V_{IND} depends on injector geometry, plasma growth scenario
 - Final plasma depends strongly on full time evolution

- Injector geometry emphasizes different drive terms
 - LFS injection: V_{LHI} early, V_{IND} late
 - HFS: injection mainly V_{LHI}

- Need to explore plasma evolution with different dominant drive terms
 - Informs predictive model
 - Future: High I_p tests in both geometries

M.W. Bongard, APS-DPP 2016
NIMROD Describes Helical Current Stream Reconnection as Drive Mechanism

- Divertor injection → minimal inductive drive

1. Streams follow field lines
2. Adjacent passes attract
3. Reconnection pinches off current rings

Divertor LHI Startup Shows suggestive commonality between experiment and NIMROD modeling

M.W. Bongard, APS-DPP 2016

- Magnetics localize coherent streams in edge
 - Infers NIMROD streams in edge

- Reconnection-drive edge ion heating

- Any stochastic reconnection region may be localized to edge
Reconnection-Driven Ion Heating Gives $T_i > T_e$ During LHI

- Impurity $T_i(0) \sim 100 - 500 \text{ eV} > T_e$ routinely observed during LHI

- Continuous ion heating from reconnection between collinear current streams
 - No effect on current drive efficiency
 - Significant ion heating (~ few 0.1 MW)

Ion heating correlated with high frequency MHD fluctuations, not with discrete reconnection between helical streams

Ion heating consistent with 2-fluid reconnection theory

M.W. Bongard, APS-DPP 2016
Different MHD Activity Observed Between LFS and HFS Injection Geometry

- **LFS (outboard) injection:**
 - MHD initially continuous, large amplitude, $n = 1$
 - Transitions to intermittent bursts later in the discharge
 - Burst spacing increase with I_p
 - Similar to NIMROD simulation

- **HFS (inboard) injection:**
 - Continuous, large-amplitude $n = 1$ activity early on
 - Abrupt cut-off in large amplitude activity
 - Reduced $n = 1$ magnitude for remainder of discharge

- **Differences suggest multiple current drive mechanisms present**

M.W. Bongard, APS-DPP 2016
LFS Local Helicity Injection Produces Core $T_e > 100$ eV

- Plasma shape grows inward from LFS injectors
 - Shape evolution generates V_{IND}
 - $V_{\text{IND}} > V_{\text{LHI}}$ during high-I_p phase

- Peaked $T_e(R)$ during drive phase (connected)
 - Not strongly stochastic
 - After disconnect radial compression drives skin current

- Core $n_e > 10^{19}$ m$^{-3}$, $T_e \geq 100$ eV provides target for subsequent CD

\[\text{M.W. Bongard, APS-DPP 2016} \]
• Plasmas with same LFS LHI system and static geometry evolution
 - Lower performance due to shape constraint
 • High R_0, reduced A_{plasma}
 - $V_{\text{IND}} \sim 0 < V_{\text{LHI}}$; $T_e(0) \sim 80$ eV

• $T_e(R)$ peaked while driven by outboard LHI

Contrast-enhanced high-speed image and fast boundary reconstructions
Technical Challenges Arise for LHI Startup With HFS Injection Geometry

- **Initial relaxation to tokamak state**
 - More difficult for low R_{inj}, high B_{inj}
 - Magnetic geometry constrained by injector clearance requirements

- **Current source behavior at increased B_{inj}**

- **Plasma-material interactions**
 - PMI on injector surfaces
 - inhibits V_{inj}
 - can damage injectors
 - PMI on machine surfaces
 - Impedes reproducibility
 - More severe for HFS injection

Above: LHI plasma before and after relaxation

Below: example of PMI on injector (left), eventually leading to insulator failure (right)

M.W. Bongard, APS-DPP 2016
• Milestone for HFS LHI system achieved

• Technical challenge with HFS injectors:
 – Lower $R_{\text{inj}} \rightarrow$ higher B_{TF} with respect to LFS system
 • \rightarrow more B_z for injector clearance ($\sim B_z/B_{\text{TF}}$)
 – B_{TF} increased $\sim 10 \times$ over previous experiments
 • \rightarrow Relaxation at constant I_{inj} more difficult

• Poloidal field shaping key to full-field relaxation
 – Reduces midplane $|B|$ and maintains injector clearance
 – Limited by I_{inj}-deformed streams contacting vessel

M.W. Bongard, APS-DPP 2016
$I_p > 0.15 \text{ MA Achieved Via HFS Injection To Date}$

- $V_{LHI} \sim 1\text{ kV}$ increased 2× over previous HFS LHI experiments

- Most operations at low field:
 - $B_{\text{inj}} = 0.046-0.092\text{ T}$
 - (20-40% of Pegasus maximum)
 - Reduced PMI, easier relaxation

- Full B_{TF} scenarios developed
 - $B_{\text{inj}} = 0.23\text{ T, } I_{\text{TF}} = 0.288\text{ MA}$
 - $I_p \approx 0.1\text{ MA}$
 - PMI more prevalent at high B_{TF}

- Injector geometry variants addressing observed PMI
 - Improvements found in each iteration
HFS Helicity Injection Provides Non-Solenoidal Sustainment at High I_N

- Constant geometry: minimal V_{IND}
- Low $I_{TF} \sim 0.6 I_p$
- $I_N > 10$ accessible
 - Constant or ramped-down B_{TF}
- Potential for high β_T
 - Aided by anomalous ion heating

![Graphs showing Ne, Te, T_{i_ov}, I_p, I_N, n_e vs. Time][1]

Access to $I_N > 14$, $n_e \sim 1 \times 10^{19} \text{ m}^{-3}$ with HFS Injection, B_{TF} Rampdown

M.W. Bongard, APS-DPP 2016
LHI Provides Access to High-β_T at $A \sim 1$ with Non-Solenoidal Sustainment and Anomalous Ion Heating

- Equilibrium reconstructions with kinetic constraints used to determine $\beta_T \equiv 2\mu_0 \langle p \rangle / B_T^2$
 - Matches external magnetics, $p_{tot}(0)$, and edge in $T_e(R)$
 - Includes anomalous $T_i(0)$
 - Some caveats for these initial results
 - Assumes closed flux surfaces inboard of injectors
 - Role of SOL edge current
 - Magnetics-only reconstructions scaled via comparison to those with kinetic constraints
 - Need full kinetic profiles in future

- High β_T plasmas often terminated by disruption
 - $n = 1$, low-m precursors

- Expands accessible high I_N, β_T space for tokamak stability studies at extreme toroidicity
 - Campaign underway to document, extend to higher I_p
 - Improving LHI injector hardware to increase I_p, B_T access

Initial Exploration of High-β_T Space

M.W. Bongard, APS-DPP 2016
Progress in Non-Solenoidal Startup on Pegasus

- **LHI provides high I_p, non-solenoidal tokamak startup**
 - Flexible injection geometry balances V_{LHI} and V_{IND} drive, engineering constraints
 - Improved power balance model suggests technique is scalable to larger devices
 - Questions remain on confinement and reconnection dynamics
 - Thomson scattering: Peaked T_e, n_e suggest favorable realized confinement

- **New high-field-side injector systems exploring strong V_{LHI} limit**
 - Injector operation and relaxation to tokamak demonstrated at full TF ($B_{inj} \sim 0.25$ T)
 - Completely V_{LHI} driven startup and sustainment realized
 - Non-solenoidal $I_p(t)$ via LHI enables access to stability tests at extreme toroidicity
 - Sustained operation at high I_N, high β_T

- **Present campaign:**
 - Optimize HFS injector implementation to mitigate PMI at high B_{TF}
 - Develop high I_p scenarios to test scalings in LFS, HFS geometries
 - Design CHI system for comparison studies (with PPPL, U. Wash)
Reprints of this and other PEGASUS presentations are available online at

http://pegasus.ep.wisc.edu/Technical_Reports