Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment

M.W. Bongard, R.J. Fonck, K.E. Thome, D.S. Thompson

55th Annual Meeting of the APS Division of Plasma Physics

Denver, CO
November 14, 2013
<table>
<thead>
<tr>
<th>Utilizing Unique Aspects of the ST to Improve Edge Physics Understanding</th>
<th>Pegasus Hall Probe Deployed to Measure J</th>
<th>Peeling Modes Accessed via Skin Current, Match Empirical and Theoretical Expectations</th>
<th>H-mode Plasmas Routinely Obtained in Pegasus</th>
<th>Two Distinct ELM Types Observed in H-mode</th>
<th>Type III Jedge ELM Dynamics Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegasus is a Compact, Ultralow-A ST</td>
<td>J(R,t) Calculable Directly from Ampere’s Law</td>
<td>Peeling Modes Have Low-n, High-m Structure</td>
<td>Edge Current Pedestal Observed in H-Mode</td>
<td>ELMs Have Distinct Magnetic Signatures</td>
<td>Type I Jedge ELM Dynamics Measured</td>
</tr>
<tr>
<td>Edge Stability Critical to Next-Step Fusion Devices</td>
<td>Direct J(R) Profiles Obtained in Pegasus</td>
<td>Peeling Mode Onset Consistent with Ideal MHD</td>
<td>Local Helicity Injection Startup Compatible with Consequent High-Quality OH H-mode</td>
<td>Pegasus ELM Spectra Similar to NSTX</td>
<td>Low-A Regime Provides Environment for Unique Tests of Edge Stability Theory</td>
</tr>
<tr>
<td>Validated, Predictive Theory Needed to Mitigate ELMs</td>
<td>High Temporal Resolution Resolves Nonlinear Peeling Mode Jedge Dynamics</td>
<td>Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport</td>
<td>Divertor Coils Activated to Access Standard Separatrix-Limited H-modes</td>
<td>Disruptive Type I ELM Occurs at High Input Power</td>
<td>Type I ELM Filament Ejection Coincides with Jedge Current-Hole Generation</td>
</tr>
</tbody>
</table>

ELM Precursor Components Grow on MHD Timescales

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Utilizing Unique Aspects of the ST to Improve Edge Physics Understanding

• Low A ST operation offers ready access to AT physics
 – Low H-mode P_{th}; strong neoclassical effects at low T_e
 – Peeling, peeling-balloonning mode edge physics
 – Simplified diagnostic access \rightarrow unique $J_{edge}(t)$ measurements

• Peeling mode characterized in L-mode via skin current drive
 – Edge-localized, low-n, ideal MHD mode; onset consistent with ideal MHD
 – Nonlinear J_{edge} dynamics: Filament generation, expulsion, and propagation

• Extension to H-mode: Measurements of pedestal, ELM dynamics
 – Ohmic H-mode routinely accessed; limited and diverted magnetic topologies
 – Two ELM regimes suggested to date with differing toroidal mode spectra
 – $J_{edge}(R,t)$ measured throughout ELM crash

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
PEGASUS is a Compact, Ultralow-A ST

Equilibrium Field Coils

High-stress Ohmic heating solenoid

Vacuum Vessel

Toroidal Field Coils

Ohmic Trim Coils

New Divertor Coils

Local Helicity Injectors

Experimental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Achieved</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.15 – 1.3</td>
<td>1.12 – 1.3</td>
</tr>
<tr>
<td>R(m)</td>
<td>0.2 – 0.45</td>
<td>0.2 – 0.45</td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>≤ .23</td>
<td>≤ 0.30</td>
</tr>
<tr>
<td>I_N (MA/m-T)</td>
<td>6 – 14</td>
<td>6 – 20</td>
</tr>
<tr>
<td>RB_t (T-m)</td>
<td>≤ 0.06</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>κ</td>
<td>1.4 – 3.7</td>
<td>1.4 – 3.7</td>
</tr>
<tr>
<td>τ_{shot} (s)</td>
<td>≤ 0.025</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>β_t (%)</td>
<td>≤ 25</td>
<td>> 40</td>
</tr>
</tbody>
</table>

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Edge Stability Critical to Next-Step Fusion Devices

- Future fusion devices will operate in H-mode
 - Edge Localized Modes (ELMs) of concern

- Peeling-balloonning theory believed to underlie most damaging Type-I ELM
 - Pressure, current density gradients in edge drive ideal MHD instabilities
 - Detailed J_{edge} measurements needed

\[\propto \frac{qRJ_\parallel}{B} \]

\[\rho_\text{ped} \propto \alpha/\alpha_c \]

***: Snyder, Phys. Plasmas 12, 056115 (2005); Hegna, Phys. Plasmas 3, 584 (1996)

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Validated, Predictive Theory Needed to Mitigate ELMs

- **Peeling-ballooning model**
 - Competing ideal MHD instabilities cause ELM onset
 - Current-driven peeling modes
 - Pressure-driven ballooning modes

- **Nonlinear dynamics**
 - More complete physical models
 - Evolution of P-B mode structures
 - Heat flux deposition projections

- **Detailed measurements required to validate theory**
 - $P_{\text{edge}}, J_{\text{edge}}(R,t)$ on ELM timescales*

*S: Maggi, Nucl. Fusion **50**, 066001 (2010)
M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

PEGASUS Hall Probe Deployed to Measure J

- Precision $B_z(R, t)$ measurements
 - 16 solid-state InSb Hall sensors
 - 7.5 mm radial resolution
 - 25 kHz large-signal bandwidth

- Carbon Armored
 - Compatible with L, H-mode to date

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

\[\mu_0 J_\phi = (\nabla \times \mathbf{B})_\phi = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R} \]

- Simplest test follows from \(B_R(Z) \) or \(B_Z(R) \) measurements

- Petty* solves for an off-midplane \(B_Z(R) \) measurement set and an elliptical plasma cross-section:

\[
\mu_0 J_\phi = -\frac{B_Z}{\kappa^2 (R - R_0)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R (R - R_0)^2} \right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 (R - R_0)^2} \right)
\]

- Does not make assumptions on shape of \(J(R) \)

Direct $J_\phi(R)$ Profiles Obtained in PEGASUS

- Straightforward J estimation
 - Obtain Hall Probe $B_z(R,t)$
 - Compute dB_z/dR using interpolated smoothing spline*
 - Compute $J_\phi(R,t)$ given geometry

- Resultant $J_\phi(R,t)$ consistent with I_p, MHD evolution

- Radial span extendible with multi-shot averaging

- Higher-order shaping effects negligible within errors

* Reinsch, Numerische Mathematik 10, 177 (1967)
M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
High Temporal Resolution Resolves Nonlinear Peeling Mode J_{edge} Dynamics

- Pure peeling modes accessed in L-mode via transient skin current drive
- Radially-propagating filaments form from initial “current-hole” J_{edge} perturbation*
 - Validates formation mechanism hypothesized by EM blob transport theory**
- Filaments carry current $I_f \sim 100$-220 A
 - $I_f < 0.2\%$ of I_p, similar to MAST ELMs

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Peeling Modes Accessed via Skin Current; Match Empirical and Theoretical Expectations

- Short lifetimes with high poloidal coherence
- Detachment, radial propagation of filaments
- High-\(m\), low-\(n\) structure
- Mode amplitude increases with measured \(J/B\) theoretical drive

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

Peeling Modes Have Low-n, High-m Structure

- Dominant toroidal \(n \leq 3 \) strictly observed
 - Only detectable near edge
 - \(n = 2 \) depicted here

- Lower limit on \(m \) via cylindrical mode analysis
 - Poloidal cross-phase: \(m_{\text{lab}} \approx 41 \)
 - P8 Radial decay rate: \(m_{\text{lab}} \approx 42 \)

- More accurate \(m \) via straight field line mapping
 - PEST transform large at \(A \sim 1 \)
 - \(m \sim 3-7 \) \(m_{\text{lab}} \) for this case
Peeling Mode Onset Consistent with Ideal MHD

- High-performance discharge with peeling activity analyzed
 - $\langle I_\phi \rangle_{edge}(\psi) \sim 500 \text{ kA/m}^2$ from reconstruction with Hall data

- Analytic peeling criterion*, DCON stability analysis indicate instability

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport

- Trajectory of detached peeling filament tracked with 275 kHz imaging

- Magnetostatic repulsion* plausibly contributes to dynamics
 - Current-hole $\mathbf{J} \times \mathbf{B}$ drives a_R
 - Transition at ~ 35 μs comparable to healing time of current-hole

- Measured V_R comparable to available EM blob models**
 - $V_R \sim 4$ km/s; $V_{R,IB} \sim 8$ km/s
 - Agrees to O(1) accuracy of theory

H-mode Plasmas Routinely Obtained in PEGASUS

- Obtained with centerstack fueling
 - Ohmically heated
 - Limited or diverted topology

- Standard H-mode signatures
 - Quiescent edge
 - Reduced D_α emission
 - T_e, T_i increase
 - Large, small ELMs suggested
 - Bifurcation in Φ_D
 - Toroidal flow reversal

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Edge Current Pedestal Observed in H-Mode

- Internal B measurements from Hall array* yield local $J_\phi(R,t)$**
 - Map to ψ_N only approximate

- Current gradient scale length reduced in H-mode

*M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

Local Helicity Injection Startup Compatible with Consequent High-Quality OH H-mode

- High-\(I_p \), long-pulse H-mode plasmas desirable for PEGASUS goals
 - Confinement and edge stability studies; attaining high \(\beta_T \) regime

- \(V \)-s savings provided by LHI support H-mode research
 - \(I_p > 150 \) kA, limited and diverted; highest H-mode \(I_p \) to date
 - No fundamental obstacle to H-mode access from LHI physics

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

*: Battaglia et al., Nucl. Fusion 51, 073029 (2011)
Divertor Coils Activated to Access Standard Separatrix-Limited H-modes

Non-diverted: Centerstack Limited

Diverted: Separatrix Limited

- Initial results show no significant difference between topologies

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Two Distinct ELM Types Observed in H-mode

- Conventional identification complicated by lack of P_{aux} and modest pulse length
 - Large, Type I-like ELMs are infrequent and violent
 - Can cause H-L back-transition
 - Occur at high P_{OH}
 - Small, Type III-like more ubiquitous, less perturbing
 - Occur at lower P_{OH}

- Temporally coincident with D_{α} bursts

- Standard filamentary structures observed during ELM crash

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
ELMs Have Distinct Magnetic Signatures

- High-n Mirnov coil array placed at edge
 - Resolves $n < 20$ without phase wrapping
- n spectra imply different MHD modes at play
 - n manifold used to tentatively classify ELMs

Large "Type I:" Peeling-Ballooning?

Small "Type III:" Peeling-like?
PEGASUS ELM Spectra Similar to NSTX

- **PEGASUS**: ELM types have distinct n
 - Large (“Type I”): intermediate $5 < n < 15$
 - Small (“Type III”): low $n \leq 3$

- Similar n ranges reported for NSTX*
 - Type I: intermediate $5 \leq n \leq 8$
 - Type III: low $n \leq 3$

- Differences in machines’ ELM toroidal mode spectra attributable to A effects?
 - Conventional AT Type I ELMs at higher n**
 - But, at low ν^* (\rightarrow higher J_{BS}) n can fall
 - ST’s naturally provide strong peeling drive
 - Toroidal field utilization $I_p/I_{TF} \sim J_{\parallel}/B$

* Maingi et al., Nuclear Fusion 45, 1066 (2005)
**: Example: Perez et al., Nuclear Fusion 44, 609 (2004)
Disruptive Type I ELM Occurs at High Input Power

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013

- Large Type I ELM after quiescent period
 - Large ELM induces back-transition, terminates discharge
 - Similar to large tokamaks with auxiliary heating

Spiraling heat deposition on lower divertor plate from large ELM

• Magnetic signature of ELMs have multiple n components
 – Simultaneously unstable modes

• Example: Large ELM signature
 – Immediately prior to D_α rise

• Bandpass-filtered Mirnov components: different growth rates present
 – Timescale: < 10’s μs
 – Dominant $n = 8$ grows continuously
 – $n = 6$ component grows and decays prior to crash

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Type III J$_{\text{edge}}$ ELM Dynamics Measured

- $J(R,t)$ profiles measured throughout single Type III small ELM
 - $n = 1$ precursor

- Current-hole perturbation accompanies pedestal crash
 - Similar to peeling modes in PEGASUS

- Rapid recovery of H-mode pedestal

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Type I J_{edge} ELM Dynamics Measured

- $J(R,t)$ profiles resolved throughout single Type I ELM cycle
 - No clear EM precursor

- J_{edge} builds to $\sim 2x$ pre-ELM value

- Crash phase resembles L-mode
 - Reduction in gradient scale length
 - Intermediate $n = 6 – 9$ MHD present

- Filament generation suggested
 - Post-ELM J_{edge} attained by current-hole expulsion

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
J_{\text{edge}} Structure Reflected in B_{z} Measurements

Type I Peak

Type I Mid-Crash

Filament Expulsion

Graphs

- Type I Peak: Graph showing J_{ϕ} [kA/m2] vs. R [m] with data points and error bars.
- Type I Mid-Crash: Similar graph with data points and error bars, showing a transition phase.
- Filament Expulsion: Graph showing Hall B_{z} [mT] vs. R [m], with data points and error bars, indicating filament expulsion.

Data Points

- Type I Peak: 65676, 24.3910 ms
- Type I Mid-Crash: 65676, 24.4080 ms
- Filament Expulsion: 65676, 24.4260 ms

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Type I ELM Filament Ejection Coincides with J_{edge} Current-Hole Generation

- Outwardly-propagating filament observed with high-speed visible imaging in ELM crash

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013
Low-A Regime Provides Environment for Unique Tests of Edge Stability Theory

• Peeling mode characteristics consistent with theory
 – Onset, spatial structure, MHD virulence consistent with ideal MHD
 – Nonlinear dynamics: filament creation / propagation from J_{edge} current-hole

• Ohmic H-mode routinely accessed at $A \rightarrow 1$
 – Standard features observed in limited and diverted topologies
 – Compatible with non-solenoidal local helicity injection startup

• Two ELM regimes identified with differing toroidal mode spectra
 – Large, Type I-like: intermediate n
 – Small, Type III-like: low n
 – Observations similar to NSTX results

• J_{edge} dynamics measured throughout ELM crash
 – J_{edge} pedestal present in H-mode
 – $J_{\text{edge}}(R,t)$ current-hole perturbations and current-carrying filament expulsion

M.W. Bongard, 55th APS-DPP, Denver, CO, Nov. 2013