Effect of Aspect Ratio on H-mode and ELM Characteristics

K. E. Thome

57th Annual Meeting of the APS Division of Plasma Physics

Savannah, GA
November 17, 2015
Motivation I

H-mode Characteristics I

H-mode Characteristics II

Power Threshold

ELMs

Future Work

Motivation II

Energy Confinement Improves in H-Mode

Pegasus Hall Probe Deployed

Noise Shielding in Pegasus

Large Type I and II ELMs observed

Pressure correlation with MHD fluctuations

Pegasus

Pegasus has the ability to produce current and pressure pedestal

J \((R,t) \) calculated from Ampere’s Law

Simplified LP Circuit/Grounding Scheme

Hall Probe Observes Large ELM dynamics through discharge

Pressure profiles suggest existence of edge pedestal

H-mode Upgrades

\(P_{\text{LH}} \) dependence upon Aspect Ratio

Direct J Profiles obtained in Pegasus

Triple Probe Theory

Closer Inspection of \(J \) edge reveals complex behavior

Future experiments with low MHD are needed

K.E. Thome, APS-DPP 2015
H-mode Studies Across Physics Regimes Crucial

- ITER will operate in H-mode
- Parameter variations critical to validate theories of H-mode and ELM behavior
- Toroidal aspect ratio A changes H-mode access, equilibrium, and stability
- Low-A H-mode differences
 - Fueling location importance
 - P_{LH} and ELM characteristics
 - Magnetic configuration effects

$A \geq 4, q_\psi \geq 4$

$A \geq 1.25, q_\psi \geq 12$

K.E. Thome, APS-DPP 2015
\(A \sim 1 \rightarrow \text{high } I_p \text{ at very low } B_T \)
- Excitation of peeling modes without \(J_{BS} \)
- Easy access to H-mode regime and ELMs
- Neoclassical effects (resistivity enhancement)

Modest-sized plasma and relatively low \(T_e \)
- Allows diagnostic access to pedestal
- Pedestal \(J_\phi(R, t), p(R, t), \) and \(v_\phi(R, t) \) via probes

K.E. Thome, APS-DPP 2015

PEGASUS Provides H-mode Plasmas at Ultralow-A

Experimental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.15 – 1.3</td>
</tr>
<tr>
<td>R (m)</td>
<td>0.2 – 0.45</td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>≤ 0.25</td>
</tr>
<tr>
<td>B_T (T)</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Δt_shot (s)</td>
<td>≤ 0.025</td>
</tr>
<tr>
<td>Z_eff</td>
<td>~ 1</td>
</tr>
<tr>
<td>Recycling</td>
<td>< 0.7</td>
</tr>
</tbody>
</table>

High-stress Ohmic Heating Solenoid

Local DC Helicity Injectors

Divertor Coils

K.E. Thome, APS-DPP 2015
Recent Upgrades for H-mode Studies

- **High-field-side (HFS fueling)**
 - Two valves (top and bottom)
 - Improved density control

- **Augmented divertor coils**
 - New external divertor set
 - Allows SN, DN operation

- **Radial field coils**
 - Vertical position control
H-mode Readily Accessed at Near-Unity A

- $A \approx 1 \rightarrow \text{low } B_T \rightarrow \text{low } P_{\text{LH}}$

$$P_{\text{LH}} \sim n_e^{0.717} B_T^{0.803} S^{0.941}$$

- H-mode achieved
 - HFS neutral fueling
 - Similar to other STs
 - Limited or diverted plasmas

Fast visible imaging, $\Delta t \sim 30 \mu s$

K.E. Thome, APS-DPP 2015

Standard Signatures Observed in OH H-mode

- Quiescent edge
 - Edge current and pressure pedestals

- Reduced D_α

- Large and small ELMs

- Bifurcation in ϕ_D
 - At $A \sim 1$, indicates current redistribution

K.E. Thome, APS-DPP 2015
Energy Confinement Improves in H-mode

• Equilibrium reconstructions yield τ_e

$$\tau_e = \frac{W_k}{P_{in} - dW/dt - P_{RAD}}$$

 - Challenges: short pulse, MHD, $I_{wall}(t)$
 - Significant dW/dt

• $W_k (\tau_e)$ increases after L-H transition
 - H_{98} increases from 0.5 to 1.0

• Ongoing: Virial analysis for fast τ_e

K.E. Thome, APS-DPP 2015
• Provides magnetics based β_p, W_k, and τ_e\(^1\)

• High-A: $\beta_{p,\text{circ}} \approx 1 + \mu$
 - Overestimates β_p, W_k at low-A
 - $\mu = 4\pi B_{T0} R_0 \Delta \Phi / B_{pa}^2 \Omega$

• Low-A: $\beta_p = S_1/2 + S_2/2(1 - R_T/R_0) + \mu$
 - Full treatment accurately determines β_p, W_k

• In progress: fast boundary reconstruction code for full treatment at $A \sim 1$

\(^1\) Lao et al., Nucl. Fusion 25, 1421 (1985).
Ti and Te Increase in H-mode

- OH plasmas: $T_i \ll T_e$

- Impurity T_i doubles

- Increasing $T_e(0)$
 - Increasing, peaking CV emission observed in H-mode
Thomson Scattering Indicates Higher H-mode T_e

- Initial measurements
 - Grating optimized: $T_e \leq 100$ eV

- L-mode: $T_e(0) \sim 150$ eV

- H-mode: $T_{e, H}(0) > T_{e, L}(0)$
 - Spectrum broadened off low T_e grating
 - Comparable n_e, but lower peak emission

- Diagnostic upgrades improve spatial and T_e resolution
 - Alternate grating: $T_e \leq 1$ keV

See posters 118 and 119 for more detail
Strengthened Core Rotation in H-mode

- No external momentum input — intrinsic rotation
- Chordally-integrated velocity profiles show low rotation in L-mode
Edge Pedestals Measured with Probes

- A ~ 1: very low $B_T \rightarrow$ low T_e
 - Unique pedestal access with probes

- Inter-ELM current pedestal formation
 - Measured with Hall probe array1,2
 - Scale length: 4 \rightarrow 2 cm L to H

- Pressure pedestal observed
 - Multi-shot scan with triple Langmuir probe
 - Edge distortion effects removed
 - See poster 120 for more information

Extends P_{LH} to $A \sim 1$ regime

Vary P_{OH} with power scan
- Transition time from ϕ_D bifurcation
- Wide parameter range
 - $P_{OH} = 0.1 - 0.6$ MW
 - $n_e = 0.5 - 4 \times 10^{19}$ m$^{-3}$
 - Limited: Centerstack
 - Diverted: USN (favorable ∇B)

$P_{LH,exp} = P_{OH} - \frac{dW}{dt}$
- $\frac{dW}{dt}$ by magnetic reconstruction
- $\sim 30\%$ correction
P_{LH} Shows Strong Density Dependence

- Survey of L and H-mode plasmas at different P_{OH} and n_e

- P_{LH} increases with n_e
 - n_e dependence consistent with scalings
 - Density minimum not apparent

- Topology independent
 - Diverted and limited P_{LH} similar

Threshold Power vs. Density

$P_{\text{LH}}_{\text{exp}} \sim 0.7P_{\text{OH}}$

$P_{\text{OH}}/(B_T^{0.803}S^{0.941}) [\text{MW/T.m}^2]$

$\bar{n_e} [10^{20} \text{ m}^{-3}]$

K.E. Thome, APS-DPP 2015
At low A, $P_{\text{LH}} \gg P_{\text{ITPA08}}$

- P_{LH} increasingly diverges from expectations as $A \to 1$
- Discrepancy may hint at additional physics

1 Maingi et al., Nucl. Fusion, 50, 064010 (2010).
Some P_{LH} Results Consistent with FM3 Model

- FM3 model reproduces P_{ITPA08} scaling

- FM3: $P_{\text{LH}}(n_e)$ minimum $\sim 1 \times 10^{18}$ m$^{-3}$
 - $n_e/n_G << 0.1$, inaccessible due to runaways

- P_{LH} topology independence
 \[\frac{P_{\text{LH}}^{\text{lim}}}{P_{\text{L-H}}^{\text{div}}} \approx \left(\frac{q_{*}^{\text{lim}}}{q_{*}^{\text{div}}} \right)^{-7/9} \]
 $\gg 1$ @ $A \sim 3$
 $\rightarrow 1$ @ $A \sim 1$

- Strong $P_{\text{LH}}(A)$ not understood
 - Multi-machine P_{LH} studies in progress/proposed (NSTX-U, PEGASUS, DIII-D)

1 Fundamenski et al., Nucl. Fusion 52, 062003 (2012).
• Filament structures observed
 – Coincident with D_α bursts

• Small (“Type III”) ELMs ubiquitous, less perturbing
 – $P_{OH} \sim P_{LH}$

• Large (“Type I”) ELMs infrequent, violent
 – $P_{OH} \gg P_{LH}$
 – Can cause H-L back-transition
• Edge Mirnov array measures ELM toroidal mode spectrum
 – $n \leq 20$ resolved by cross-phase analyses

• Type III: A dependent
 – $A \leq 1.4$: $n \leq 1 – 4$
 • PEGASUS and NSTX1
 – $A \sim 3$: $n > 8$2

• Type I: A independent
 – Intermediate-n2,3
 – Low-A devices have lower n

• Increased peeling drive at low-A
 – Higher $J_{\text{edge}}/B \rightarrow$ lower n

1 Maingi et al., Nucl. Fusion \textbf{45}, 1066 (2005).
3 Perez et al., Nucl. Fusion \textbf{44}, 609 (2004).
Nonlinear ELM Precursors Observed

- Magnetic signature of ELMs have multiple n components
 - Simultaneously unstable modes

- Modes show different time evolutions
 - Isolated with bandpass filter
 - $n = 8$ grows continuously
 - $n = 6$ fluctuates prior to crash

K.E. Thome, APS-DPP 2015
• Challenge: study nonlinear ELMs at Alfvénic timescales

• Complex behavior with current-filament ejection
 – Time-averaged data qualitatively similar to JOREK1

Results Motivate Proposed PEGASUS-Upgrade

<table>
<thead>
<tr>
<th></th>
<th>PEGASUS</th>
<th>PEGASUS-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_{SOL} (mWb)</td>
<td>40</td>
<td>138 / 170</td>
</tr>
<tr>
<td>$B_{T,\text{max}}$ (T) at R_0</td>
<td>0.14</td>
<td>~ 0.4</td>
</tr>
<tr>
<td>$I_{p,\text{max}}$ (MA)</td>
<td>0.15</td>
<td>0.3</td>
</tr>
<tr>
<td>Δt (ms)</td>
<td>15</td>
<td>> 50</td>
</tr>
<tr>
<td>A</td>
<td>1.15</td>
<td>1.22</td>
</tr>
</tbody>
</table>

- **Nonlinear pedestal and ELM studies**
 - Simultaneous measurements of $p(R,t)$, $J(R,t)$, $v_\phi(R,t)$
 - New edge diagnostics (probe arrays, DNB)
 - Tests of neoclassical physics

- **ELM Modification and Mitigation**
 - Novel 3D-MP coil array
 - LHI current injectors in divertor, LFS regions
• Full design study planned
 – Proposal includes initial tests

• Comprehensive 3D-MP system
 – LFS coils, spaced with ~equal-PEST angle
 • 12 toroidal x 7 poloidal array
 • Initial DC power systems for n=3 control
 – HFS 4-fold helical coil set

• Uniqueness
 – Wide spectral range
 – Measure internal plasma response

K.E. Thome, APS-DPP 2015
• Local helicity injection system provides 3D SOL current injection
 – $I_{\text{inj}} \leq 5 \text{ kA}$, $J_{\text{inj}} \sim 1 \text{ kA/cm}^2$

• LHI use with H-mode studies
 – Pulse extension and J(R) control

• LHI system affects edge plasma
 – Strong 3D edge current perturbation
 – Edge biasing to modify rotation profiles
 – Similar to LHCD on EAST\(^1\)

Unique Studies of H-mode Physics at A~1

- H-mode achieved in plasma with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_α; increased τ_e; $H_{98}\sim 1$; etc.

- P_{LH} features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Little to no difference between limited and diverted H-modes

- Operating regime allows detailed studies of ELMs
 - ELM mode numbers at low-A systematically lower than high-A
 - Nonlinear ELM dynamics measured at Alfvénic timescales

- Upgrade allows detailed study of nonlinear ELMs, pedestal physics
 - Complements experiments on larger fusion facilities
 - Detailed measurements can elucidate more limited results on larger facilities