Non-Solenoidal Tokamak Startup Using High-Field-Side Local Helicity Injection on the Pegasus ST

Justin M. Perry

APS-DPP
Milwaukee, WI
10-24-2017
A New Campaign Studies Local Helicity Injection (LHI) Using High-Field-Side Injectors

- Current drive quantified by:
 \[V_{LHI} \frac{A_{\text{inj}} B_{\text{inj}}}{V_{\text{inj}}} \]

- Edge current extracted from injectors
- Relaxation to tokamak-like state via helicity-conserving instabilities

I_p ≤ 0.2 MA (I_{\text{inj}} ≤ 8 kA)
Injector Geometries Emphasize Different Current Drives

Low-Field-Side Injection:
- Injectors on outboard mid-plane
- High $R_{\text{inj}} \rightarrow$ low V_{LHI}
- Dynamic shape \rightarrow strong V_{IND}

High-Field-Side Injection:
- Injectors in lower divertor
- Low $R_{\text{inj}} \rightarrow$ strong V_{LHI}
- Static shape \rightarrow minimal V_{IND}
1. Instability of current filaments
 - Long wavelength, low frequency:
 • Line-tied kink
 • Filament merger and reconnection
 • Dominates external magnetics
 - Short wavelength, high frequency:
 • Correlated with anomalous ion heating
 • Reconnection-driven turbulence?

2. Instabilities of the tokamak plasma
 • Tearing, kink modes
 • Relevant to hand-off
Abrupt Transition in MHD Behavior During HFS Injection

• Large-amplitude, low freq. in early phase
 – Large scale n=1 at 20-80 kHz
 – Line-tied kink of current streams

• Abrupt reduction in low frequency activity under some conditions:
 – I_p growth continues
 – Interpreted as kink stabilization

• Several hypotheses for stabilization mechanism under consideration
Shift to High Frequency Inside Plasma Edge Suggests Short Wavelength Current Drive Mechanism

- **External Measurement** ($R > R_{\text{edge}}$)
 - Reduction at all frequencies
 - Suppression of large $n=1$ mode
 - Remaining \tilde{b}/B similar to L-mode

- **Internal Measurement** ($R < R_{\text{edge}}$)
 - High-f activity increases after transition
 - Turbulence, reconnection on smaller scale?
 - Continued I_p growth suggests short wavelength activity drives current
I_p Increases Linearly with V_{LHI} when $V_{IND} \sim 0$

- Static plasma geometry $\rightarrow V_{IND} \sim 0$
 - Linear I_p scaling suggests fixed $\langle \eta \rangle$
 - Z_{eff}, n_e, plasma geometry effects not yet accounted for

- Greater current drive efficacy following MHD transition
 - Low MHD: up to 50% more I_p
 - Relationship to confinement?
Confinement Properties Set Current Drive Scaling for LHI

- HI balanced by resistive dissipation
 - $\langle \eta \rangle$ influenced by confinement
- Crude estimates of confinement inform operation space
 - Strongly dependent on Z_{eff}
- Resistive dissipation complicated by:
 - Dual confinement zones?
 - Neoclassical trapping, non-thermal electrons
 - Hyper-resistivity?
High-Field-Side LHI at A~1 Provides Access to $\beta_T \sim 1$

- **A~1:**
 - Naturally high κ
 - High I_N stability limit

- **HFS LHI: unique operation space**
 - High I_p possible at low I_{TF}
 - $I_N = 5A\frac{I_p}{I_{TF}} > 10$ accessible
 - Naturally low ℓ_i
 - Strong auxiliary ion heating

- **See invited talk Thursday AM**
 - T13.00004, J.A. Reusch

High-Field-Side LHI Builds the Physics Basis for High-I\textsubscript{p} Non-inductive Startup and Sustainment

- High-field-side LHI: increased $V\textsubscript{LHI}$, reduced $V\textsubscript{IND}$
- Novel MHD behavior suggests short wavelength current drive mechanism
- Attainable $I\textsubscript{p}$ scales with $V\textsubscript{LHI}$; confinement under investigation
- $\beta_T \approx 100\%$ using unique properties of HFS LHI at $A \sim 1$

See Pegasus posters: Thursday PM