Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

Justin M. Perry

APS-DPP Meeting
11-2-2016
Abstract

- Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits trade-offs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (T). However, relaxation to a tokamak state is increasingly frustrated for T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved was limited to V by plasma-material interactions on the divertor plate, which were resolved by increasing injector elevation. In these experiments with helicity injection as the dominant current drive MA has been attained, with eV and m$^{-3}$. Extrapolation to full, longer pulse length, and kV suggest MA should be attainable in a plasma dominated by helicity drive.
Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

<table>
<thead>
<tr>
<th>LHI: Scalable Non-Solenoid Startup</th>
<th>Exploring LHI Physics With HFS Injection</th>
<th>Relaxation at Increased B_{inj}</th>
<th>PMI Suppression</th>
<th>Preliminary Results</th>
<th>MHD Behavior with HFS Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Helicity Injection in the Pegasus ST</td>
<td>Research Goal: Investigate Physics of LHI-Dominant R</td>
<td>Understanding Requirements for Relaxation to a Tokamak-like Plasma Configuration</td>
<td>Challenge: Sustaining High V_{inj} 1-2 cm from LCFS</td>
<td>Ip up to 0.15 MA achieved; Sustainment of $I_p > 0.1$ MA</td>
<td>NIMROD Model Explains LHI Current Drive Mechanism</td>
</tr>
<tr>
<td>Stages of LHI Startup (3 pics of stages of LHI discharge)</td>
<td>Technical Challenges for LHI Startup with HFS Injection</td>
<td>Challenges to Relaxation at Increased B_{inj}</td>
<td>Injector Alignment to Field Critical to PMI Mitigation</td>
<td>Te > 100 eV Measured during LHI Startup and Sustainment</td>
<td>MHD Activity: HFS Injection Shows Different Characteristics than LFS Injection</td>
</tr>
<tr>
<td>Helicity Conservation: Quantifying Current Drive from LHI</td>
<td>HFS Injection Implementation: Lower Divertor Injectors</td>
<td>Vacuum Poloidal Field Shaping Aids Relaxation with HFS Injection</td>
<td>Injector Proximity to Lower Divertor Plate Induces PMI</td>
<td>Power balance model shows different current drive components at HFS/LFS injection</td>
<td>Possible Differences in Current Drive Mechanism with HFS Injection</td>
</tr>
<tr>
<td>Flexible Injector Geometry: Different Physics with HFS and LFS Injection</td>
<td>Large-A Injector Design provides enhanced performance, simplified geometry</td>
<td>Vacuum Poloidal Field Shaping Affects Relaxation Physics</td>
<td>Repositioning and Injectors, Redesign of Local Limiters Mitigates PMI</td>
<td>Access to High Is</td>
<td>Summary</td>
</tr>
</tbody>
</table>

J.M. Perry, APS DPP 2016
Local Helicity Injection
Injector Location Matters
Relaxation at Increased B_{inj}
PMI Suppression
Preliminary Results
MHD Characteristics During HFS Injection
Local Helicity Injection (LHI) is a Promising Non-Solenoidal Startup Technique

- Edge current extracted from injectors
- Unstable current streams form tokamak-like state via Taylor relaxation
- Used routinely for startup on Pegasus

\(I_p \leq 0.18 \text{ MA} \) (\(I_{\text{inj}} = 5 \text{ kA} \))
Local Helicity Injection (LHI) Provides Robust ST Startup without OH Solenoid

Three-Injector Array

Unstable injected current streams

Reconnect, relax to Tokamak-like state

Subsequent OH-Driven Tokamak

J.M. Perry, APS DPP 2016
Total helicity K in a tokamak geometry: \[K = \int_V (A + A_{vac}) \cdot (B - B_{vac}) \, d^3x \]

\[
\frac{dK}{dt} = -2 \int_V \eta J \cdot B \, d^3x - 2 \frac{d\psi}{dt} \Psi - 2 \int_A \Phi B \cdot ds \quad \Rightarrow \quad I_p \leq \frac{A_p}{2\pi R_0 \langle \eta \rangle} (V_{ind} + V_{eff})
\]

Power balance relation incorporates all drive and anti-drive terms:

- LHI current drive (V_{LHI})
- Net inductive drive (V_{IND}), includes:
 - Shape evolution
 - I_p growth
 - PF induction
- Plasma resistance, anti-drive (V_{IR})

\[
I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0
\]
Flexible Injector Geometry: Accessing Different Physics Through Varied Injector Location

High-Field-Side Injection:
- Injectors in lower divertor
- Increased V_{eff} due to high field at injector
- More static plasma shape evolution
 \[\rightarrow \text{Reduced } V_{\text{IND}} \]

Low-Field-Side Injection:
- Injectors on outboard mid-plane
- Reduced V_{eff} due to lower field at injector
- Highly dynamic plasma shape evolution
 \[\rightarrow \text{Increased } V_{\text{IND}} \]

J.M. Perry, APS DPP 2016
Investigating Physics of LHI Startup With V_{LHI} as Dominant Current Drive

- **Past experiments:**
 - LHI startup to $I_p \geq 0.18$MA using LFS injection
 - $V_{IND} > V_{LHI}$ due to strong shape evolution, PF ramp

- **Present research:** $V_{LHI} \gg V_{IND}$ to isolate physics of LHI current drive
 - Confinement behavior with LHI drive dominant
 - Stronger predictive understanding of LHI system requirements

- **Experimental requirements:**
 - Increased V_{LHI}, sustained coupling to LHI current drive
 - Minimal shape evolution \Rightarrow minimal inductive effects
 - Demonstrate LHI efficacy at increased toroidal field

J.M. Perry, APS DPP 2016
Technical Challenges for LHI Startup with HFS Injection

• Initial relaxation to Tokamak state
 – More difficult for low R_{inj}, high B_{inj}

• Current source behavior at increased B_{inj}

• Plasma-material interactions
 – PMI on injector surfaces
 • inhibits V_{inj}
 • can damage injectors
 – PMI on machine surfaces
 • Impedes reproducibility
 • More severe for HFS injection

Above: LHI plasma before and after relaxation

Below: example of PMI on injector (left), eventually leading to insulator failure (right)
HFS Injection Implementation: Lower Divertor Injectors

- Set of two injectors at toroidally opposite positions in divertor region
 - New injector design targeted toward HFS injection

- System design point:
 - 3-4 x increase in V_{LHI} over past systems
 - $A_{inj} = 8 \text{ cm}^2$ (total); $V_{inj} \geq 1.2 \text{ kV}$; $I_{inj} \geq 8 \text{ kA}$ (total)

- Three injector geometries tested since April 2016
 - Variations in R_{inj}, Z_{inj}, local limiter geometry
Large-A Injector Design Provides Enhanced Performance, Simplified Geometry

- Multi-year technology development effort

- Formidable requirements:
 - $V_{inj} > 1$ kV
 - High $J_{inj} (\sim 1$ kA/cm2)
 - 1-2 cm from LCFS

- New large-area injectors:
 - Doubled A_{inj} (2 cm$^2 \rightarrow 4$ cm2)
 - Compact design to fit in divertor region
 - Modular assembly permits in-vessel maintenance, repositioning
 - Advanced materials for resilience in harsh environment
Understanding Requirements for Relaxation to a Tokamak-Like Configuration

- Unstable current streams follow helical path, deform vacuum field

- When $B_{z,\text{inj}} \approx -B_{z,\text{vac}}$ adjacent passes attract, reconnect
 - Closed toroidal current loops formed
 - Accumulation of poloidal flux

- Taylor relaxation toward lowest energy state
 - Tokamak-like plasma formed
 - Now $I_p >> I_{\text{inj}}$ possible

Left: Current filaments follow vacuum field.
Right: null formation and relaxation to tokamak-like plasma.
Bottom: Plasma current rises during relaxation.

J.M. Perry, APS DPP 2016
Challenges to Relaxation at Increased B_{inj}

- **Relaxation condition:**
 - Substantial weakening of vacuum B_z by injected current streams

- **Injector geometry sets minimum pitch (B_z / B_{tor}):**
 - Current streams must clear opposite injector: $2\pi R_{\text{inj}} \frac{B_z}{B_{\text{tor}}} > h_{\text{inj}}$

- **HFS injection:**
 - Higher B_{tor}, lower R_{inj} than LFS injectors
 - \rightarrow more B_z for clearance
 - Relaxation more difficult, unless B_{tor} reduced or I_{inj} increased
 - Operational goal: relaxation at full Pegasus B_{tor}
Strategy for Relaxation at Full Toroidal Field ($B_{inj} = 0.23$ T)

- Highly shaped vacuum field:
 - Divertor coils positive (co-EF) to boost B_z locally near injectors for clearance (DIV 1, DIV 2)
 - Mid-plane coils negative to assist null formation (EF 45)
 - Main equilibrium coils positive (EF 23 + EF 67)
 - Vacuum field weak at mid-plane, current streams able to overpower

- After relaxation, quickly ramp vertical field for force balance

- Limitation:
 - Deformed current path must not hit outer limiter

J.M. Perry, APS DPP 2016
Successful Relaxation at Full Toroidal Field
\((B_{\text{inj}} = 0.23 \, \text{T}) \)

- Successfully employed for relaxation at full field:

 - \(B_z \) vacuum
 - \(\text{root:} B_z \) deformed

 \(B_z [\text{T}] \)

\(R \) [cm]

Vacuum Field

Deformed Field

Plasma Current

Injector Current

J.M. Perry, APS DPP 2016
Vacuum Poloidal Field Shaping Affects Relaxation Physics

- Current multiplication increases rapidly with I_{inj} once relaxation is achieved
 - Pre-relaxation: $I_p \approx I_{\text{inj}} \times N_{\text{turns}}$
 - Post-relaxation:
 \[I_p \approx I_{\text{inj}} \times M; M \gg N_{\text{turns}} \]
- With shaped vacuum fields:
 - M increases more rapidly with I_{inj}

\[\text{Increased shaping of vacuum field} \]
Challenge: Sustaining $V_{\text{inj}} > 1\text{kV}$ within 1-2 cm of LCFS

- Injectors biased by $V_{\text{inj}} \geq 1\text{kV}$
- Must be 1-2 cm from plasma edge for current drive coupling
- Injector design minimizes PMI
 - Local limiter reduces plasma impact
 - Shield rings prevent arcing to limiter
 - Cathode shield reduces local n_e
Injector Alignment to Local Magnetic Field Critical to PMI Mitigation

- Floating shield rings block path for arcing back to grounded limiter
- Improper injector alignment permits magnetic line of sight for arcing to limiter
- Curvature of field lines depends on $B_{tor} / B_{pol} \rightarrow$ varies with I_p
 - Shield structures must function for range of conditions

J.M. Perry, APS DPP 2016
Injector Proximity to Lower Divertor Plate Induces PMI

- Unipolar arcs on lower divertor
 - Can lead to bursts of ejecta that trigger PMI on injectors
 - More prevalent in increased B_{tor}

- Improvement: increased separation between injector and divertor plate
 - ΔZ: 9 cm \rightarrow 23 cm
 - PMI partially mitigated

- Electrically floating shield plates installed above divertor
 - Highly polished surface
 - Preliminary results: reduced incidence/severity of PMI
Redesigned Local Limiters Shield Injector More Effectively

Original limiter: injector immersed in plasma edge

New limiter: injector protected from plasma impact

J.M. Perry, APS DPP 2016
To Date, $I_p > 0.15$ MA Achieved With HFS Injection

- V_{LHI} increased 2x over previous experiments
- Most operations at low field:
 - $B_{inj}=0.046-0.092$ T (20-40% of max)
 - Reduced PMI, easier relaxation
- Demonstration of relaxed discharges at full field
 - $B_{inj}=0.23$ T, $I_{TF} = 0.288$ MA
 - $I_p \approx 0.1$ MA
- Progress on PMI mitigation
 - Modified limiter/injector position
 - Entangled with geometry requirements for coupling to plasma
- Ongoing research campaign

J.M. Perry, APS DPP 2016
0-D Power Balance Model Illuminates Different Current Drive Components for HFS/LFS Injection

LFS Injection: net induction voltage dominates current drive

- V_{IR}
- V_{LHI}
- V_{IND}

![Graph of System Voltages vs Time]

- Time [ms]: 20, 25, 30, 35
- System Voltages [V]: 0.0, 0.04, 0.08, 0.12

HFS Injection: LHI drive dominates; net induction is negative

- V_{LHI}
- V_{IR}
- V_{IND}

![Graph of System Voltages vs Time]

- Time [ms]: 16, 18, 20, 22, 24, 26
- System Voltages [V]: -2, -1, 0, 1, 2

Current Profiles

- I_p [MA]: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25
- I_{inj} < 6.5 kA

- Taylor Limited
- LHI Drive Limited

- Data
- 0-D Model

![Graph of Current vs Time]

- Time [ms]: 16, 18, 20, 22, 24, 26
- I_p [MA]: 0.00, 0.04, 0.08, 0.12

J.M. Perry, APS DPP 2016
LHI-Dominant Regime: Similar T_e, n_e to LFS Injection

- Thomson Scattering profiles:
 - sustained $T_e > 100$ eV
 - $< n_e > \approx 1 \times 10^{19} \text{ m}^{-3}$

- Plasma sustained by LHI current drive, no inductive drive
 - T_e, n_e similar to inductive-dominant discharges (LFS injection)
 - Also comparable to Ohmic discharges in Pegasus

J.M. Perry, APS DPP 2016
HFS Injection Provides Non-Solenoidal Sustainment at High I_N

- Low $I_{TF} \sim 0.6 I_p$

- $I_N = 5A \frac{I_p}{I_{TF}} > 10$
 - Constant or ramped-down B_{TF}

- HFS injector geometry -> naturally high elongation

- Ready access to High β_T n_e
 - Aided by anomalous ion heating ($T_i > T_e$)

Access to $I_N > 14$, $n_e \sim 1e19 \text{ m}^{-3}$ with HFS Injection, B_{TF} Ramp-down

J.M. Perry, APS DPP 2016
LHI Provides Access to High-β_T at $A \sim 1$ with Non-Solenoidal Sustainment and Anomalous Ion Heating

- Equilibrium reconstructions indicate high β_T ($\sim <P>/B_{T0}^2$)

- High β_T plasmas often terminated by disruption
 - $n = 1$, low-m precursors

- Expands I_N, β_T space for stability studies at extreme toroidicity
 - Campaign underway to document, extend to higher I_p
 - Improved LHI injector hardware to increase I_p, B_{TF} access

Initial Exploration of High-β_T Space

- $\beta_N = 6.5$
- $\beta_N = 4$

Equilibrium Parameters
Shot 87332, 24.50 ms, Undo 72
- $I_p = 102$ kA, $R_0 = 0.317$ m
- $\beta_t = 0.95$, $a = 0.263$ m
- $\ell_i = 0.22$, $A = 1.21$
- $\beta_p = 0.45$, $\kappa = 2.6$
- $W = 545$ J, $\delta = 0.54$
- $B_{TF} = 0.0249$ T, $q_{95} = 7.24$

J.M. Perry, APS DPP 2016
NIMROD Simulations Describe Current Helical Current Stream Reconnection as Drive Mechanism

1. Streams follow field lines
2. Adjacent passes attract
3. Reconnection pinches off current rings
4. Accumulation of poloidal flux; current filaments persist

- Reconnection events produce MHD bursts; seen in both simulation and experiment
MHD Activity During HFS Injection Shows Different Behavior from LFS Injection

- **LFS (outboard) injection:**
 - MHD initially continuous, large amplitude, N=1
 - Transitions to intermittent bursts later in the discharge
 - Burst spacing increase with I_p
 - Similar to NIMROD simulation

- **HFS (inboard) injection:**
 - Continuous, large-amplitude N=1 activity early on
 - Abrupt cut-off in large amplitude activity
 - Reduced amplitude N=1 for remainder of discharge
Differences Suggest Multiple Current Drive Mechanism at Play

- **LFS (outboard) Injectors:**
 - MHD indicative of stream merger and reconnection drive mechanism through entire discharge

- **HFS (outboard) Injectors:**
 - MHD indicative of stream merger and reconnection drive mechanism initially
 - As B_{pol} increases, stream separation increases; at some critical level, signs of magnetic coalescence instability cease
 - I_p growth continues, pointing to additional reconnection-based drive mechanism

J.M. Perry, APS DPP 2016
Summary

- High-Field-Side injection provides access to startup with LHI as the dominant current drive:
 - Increased V_{LHI} due to higher field at low R_{inj}
 - Quasi-static plasma geometry, minimizing inductive drive terms

- HFS injection implemented in Pegasus lower divertor
 - System design point: 3-4 x increase in LHI current drive
 - Technical hurdles:
 - Relaxation at increased B_{inj}
 - PMI Suppression
 - Injector geometry for sustained coupling to plasma

- Preliminary results show feasibility of HFS injection
 - $I_p > 0.15$ MA achieved with LHI as dominant current drive
 - Relaxed plasmas at full Pegasus TF ($B_{inj} = 0.23$ T)
 - New MHD behavior suggests additional physics, multiple current drive mechanisms