Non-solenoidal Startup via Local Helicity Injection on PEGASUS: Progress and Plans

Joshua Reusch

57th Annual APS-DPP Meeting
Savannah, GA
Nov. 16th-20th, 2015
Significant Advances in Understanding of Local Helicity Injection (LHI) Startup Achieved

- LHI is a promising non-solenoidal startup technique

- Previous work identified global I_p limits, drove multi-year technology development effort to optimize injectors

- 0-D power-balance model developed to interpret, predict dynamic LHI $I_p(t)$

- Full 3D resistive MHD simulations describe LHI drive mechanism
 - Key features of this model have now been identified in experiment

- Understanding transport, confinement scaling is key for extrapolation to NSTX-U and beyond

Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928
LHI is a Scalable Non-solenoidal Startup Technique

- Significant I_p (~180kA) attained with low injected current (~5kA)
- Compact, modular, and appears scalable to MA-class startup

Current injected from local plasma source

Injected Current Stream

Local Helicity Injectors

2 m

Plasma Parameters

- $I_p \leq 0.18$ MA
- $\tau_{\text{shot}} \leq 0.025$ s
- $B_T = 0.15$ T
- $A = 1.15 - 1.3$
- $R = 0.2 - 0.45$ m
- $a \leq 0.4$ m
- $\kappa = 1.4 - 3.7$

Injector Parameters

- $I_{\text{inj}} \leq 6.5$ kA
- $V_{\text{inj}} \leq 2.5$ kV

J.A. Reusch, APS DPP 2015
Local Plasma Sources Inject Edge Current Streams that Relax, Form Tokamak-Like Plasma

- Local source: helical current stream
- MHD relaxation: tokamak-like state
- Result: Tokamak

J.A. Reusch, APS DPP 2015
Physics of LHI Encapsulated in a Hierarchy of Models

1. Maximum I_p limits*

 $I_p \leq I_{TL} \sim \sqrt{\frac{I_{TF}I_{inj}}{W}}$

2. 0-D power-balance $I_p(t)$

 $I_p [V_{LHI} - V_{IR} + V_{IND}] = 0; \quad I_p \leq I_{TL}$

3. 3D Resistive MHD (NIMROD)**

 $V_{LHI} \approx \frac{A_{inj}B_{\psi,inj}}{\Psi} V_{inj}$

Multi-year Technology Development has Produced Robust, High Performance Injectors

- **Injector requirements are formidable:**
 - $I_{\text{inj}} > 2kA$, $V_{\text{inj}} > 1kV$
 - High J_{inj} ($\sim 1kA/cm^2$)
 - 1-2 cm from LCFS
 - No deleterious PMI

- **Robust high V_{inj} achieved**
 - Cathode shaping and shielding mitigate cathode spots
 - Shield rings and local limiter (not shown) prevent arc-back
 - $\sim 3x$ increase in helicity input
 - See E.T. Hinson GP12.00117

Injector Voltage

- V_{INJ} [V]
- Time [ms]

J.A. Reusch, APS DPP 2015
• Injector impedance model developed and tested in the last year*
 - Quasi-neutrality \(I_{\text{inj}} \sim n_{\text{edge}} V_{\text{inj}}^{0.5}\), expanding double layer \(I_{\text{inj}} \sim n_{\text{arc}} V_{\text{inj}}^{0.5}\)

![Graph showing the relationship between \(\frac{I_{\text{inj}}}{\sqrt{V_{\text{inj}}}}\) and \(n_{\text{edge}}\).]

Impedance Model:

\[
I_{\text{inj}} = \text{Min}[n_{\text{edge}}, \beta n_{\text{arc}}] e^{\sqrt{\frac{2eV_{\text{inj}}}{m_e}} A_{\text{inj}}}
\]

• Strong influence on injector design and operation \((V_{\text{LHI}} \sim V_{\text{inj}})\)
 - Sets power supply requirements; gives control actuator for \(V_{\text{LHI}}(t) \rightarrow I_p(t)\)
 - See E.T. Hinson GP12.00117

0-D Power Balance Model Tracks the Dynamic LHI $I_p(t)$ Evolution*

- **Model elements:**
 - Inputs: $\langle \eta(t) \rangle$, $R_0(t)$, shape(t), $V_{\text{inj}}(t)$, $\zeta_i(t)$
 - Confinement model under development for $\langle \eta(t) \rangle$

- **Model provides source and sink voltages**
 - Significant V-s from Shape(t)

- See J.L. Barr GP12.00116

\[
I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0; \quad I_p \leq I_{TL}
\]
Surprisingly Strong Drive from Shape Evolution Dominates LHI $I_p(t)$

- Geometry change provides ~70% of total drive, dominates throughout

J.A. Reusch, APS DPP 2015
Fast Boundary Reconstruction Code Provides Shape(t) Analysis, Control

- Plasma treated as 4-6 filaments
 - Fit to external magnetics

- Validated against equilibrium reconstructions
 - Size: $R_0 \pm 1.5$ cm, $a \pm 1.5$ cm
 - Shape: $\kappa \pm 15\%$, $\delta \pm 25\%$

- Between-shot Shape(t) analysis
 - Allows shape control

- See J.L. Barr GP12.00116
NIMROD Describes Edge Reconnection Current Drive Mechanism*

1. Streams follow field lines
2. Adjacent passes attract, reconnect, pinch off current ring
3. I_p builds; current filaments persist in NIMROD, not seen in PEGASUS

Anomalous Ion Heating Confirms Existence of Strong Reconnection Activity

- T_i scales with expectations from reconnection experiments:
 - $T_i \sim B^2/\langle n_e \rangle \sim I_{inj} V_{inj}^{0.5}$

- Anomalous heating ($T_i > T_e$) persists through LHI phase

- See M.G. Burke GP12.00122

MHD Analysis Shows Existence of Unstable Current Streams in Edge

- MHD bursts accompany I_p growth
 - $n=1$ line tied kink structure
 - Localized in edge

- Correlation analysis of bursts consistent with interacting streams*
 - Coherent streams persist at high I_p, consistent with NIMROD
 - Reconnection event at peak of MHD burst

- Confinement degradation from stochasticity may be localized to edge

 E.T. Hinson GP12.00117
Edge Localized Reconnection, Strong V_{IND} Support Good Core Confinement in PEGASUS

Electron Temperature

Relative Electron Pressure

- **Peaked** T_e and P_e indicate good core confinement
 - Does not appear highly stochastic across profile
 - $T_e(0)$ comparable to Ohmic L-mode at 80kA

- **May indicate two zone confinement**
 - Drive: V_{IND} (across plasma), V_{LHI} (edge)

See: D.J. Schlossberg GP12.00118
G.M. Bodner GP12.00119
Two Zone Confinement in LHI May Scale Favorably to NSTX-U and Beyond

- I_p increases significantly with T_e
 - Confinement critical for projections to larger devices

- Larger machine \Rightarrow larger good confinement zone?
 - w_{stoch} likely scales with w_{stream}
 - Larger high T_e volume \Rightarrow lower injector requirements

- Implications of R-R vs. Ohmic scaling under investigation*

\[\chi_{\text{collisional}} = v_{\|}^2 \tau_c \left(\frac{\delta B_r}{B_{\text{tor}}} \right)^2 \sim \frac{T_e^{5/2}}{n_e} (S^{-\alpha})^2 \]

\[P_{\text{in}} = I_p V_{LHI} \quad \frac{W}{P_{\text{in}}} \sim \tau_E \sim \frac{a^2}{\chi_{\text{collisional}}} \]

\[I_p \sim \left(V_{LHI} \right)^{\frac{10}{3} - 2\alpha} \left(B_0 \right)^{\frac{2\alpha}{4/3 - 2\alpha}} \Rightarrow I_p \sim \left(V_{LHI} \right)^{\frac{5}{2}} \]

* A.B. Rechester and M.N. Rosenbluth, PRL 40 (1) 1978
C.R. Sovinec and S.C. Prager, Phys. Plasmas 3 (3) 1996
Gaps in Understanding Must be Addressed for Extrapolation to NSTX-U and Beyond

- Critical issue: unraveling effect of strong inductive drive
- Other important issues include: B_{TF}, I_p scalings; Long pulse performance

J.A. Reusch, APS DPP 2015
Divertor Injection Addresses Critical Confinement Scaling Issue for Extrapolation to NSTX-U

- Varied injector geometry separates inductive and helicity drive effects
- 3-4x increase in V_{LHI}
- Minimal V_{IND}: ~ fixed geometry
 - Confinement measurements in transport equilibrium
- Lower $R \Rightarrow$ increased B_{TF} test
- Allows higher I_p startup

J.A. Reusch, APS DPP 2015

See J.M. Perry PO6.00001
Critical Issues for LHI Predictive Understanding Addressed by Pegasus-Upgrade

- Increased B_{TF}, t_{pulse} extends scalings to NSTX-U relevant levels
 - Injector $B_{TF} \sim 0.8T$: reconnection current drive; poloidal null formation; injector physics
 - Pulse length ~ 100 ms: variable inductive drive; injector integrity
 - Diagnostics: CHERS via DNB; multi-point probe arrays, SXR camera
 - See R.J. Fonck GP12.00114

J.A. Reusch, APS DPP 2015
• Improved injectors: robust operation at > 1kV
 – Injector impedance model gives actuator for V_{LHI}, PS design point

• 0-D power balance model provides prediction of $I_p(t)$
 – Input power primarily from V_{IND} in present tests
 – Confinement scaling is critical unknown

• NIMROD provides detailed physics picture
 – New results support stream reconnection based current drive mechanism

• Surprisingly good core confinement indicated by TS
 – Peaked core $T_e \sim 120$ eV comparable to Ohmic L-mode
 – Coupled with NIMROD picture, may indicate 2-zone confinement

• Divertor injectors and Pegasus-U to address critical scaling issues

J.A. Reusch, APS DPP 2015
For more PEGASUS presentations see:

Posters (this session)

- GP12.00114: Fonck, *The Pegasus-Upgrade Experiment*
- GP12.00116: Barr, *Power Balance Modeling and Validation for ST Startup Using Local Helicity Injection*
- GP12.00117: Hinson, *Physics of Plasma Cathode Current Injection During LHI*
- GP12.00118: Schlossberg, *New Electron Temperature Measurements During Local Helicity Injection and H-mode Plasmas at the Pegasus Toroidal Experiment*
- GP12.00119: Bodner, *Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System*
- GP12.00121: Bakken, *Progress Toward a New Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas*
- GP12.00122: Burke, *Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST*

Talks (Wednesday, Nov. 18th, 2:00 PM–5:00 PM, Room: 201/202)

- PO6.00001: Perry, *Expanding Non-solenoidal Startup with Local Helicity Injection to Increased Toroidal Field and Helicity Injection Rate*
- PO6.00006: Bongard, *H-mode and Edge Physics on the Pegasus ST: Progress and Future Directions*

For reprints go to https://pegasus.ep.wisc.edu/Technical_Reports/TechReports.htm