Non-Solenoidal Tokamak Startup Using High-Field-Side Local Helicity Injection on the Pegasus ST

Grant M. Bodner

APS-DPP
Portland, OR
November 9th, 2018
Local Helicity Injection (LHI) Achieved Using Low-Field-Side and High-Field-Side Injectors

- Edge current extracted from injectors
- Relaxation to tokamak-like state via helicity-conserving instabilities

\[V_{LHI} \approx \frac{A_{inj} B_{\varphi,inj} V_{inj}}{\Psi_p} \]
Injector Geometries Emphasize Different Current Drives

Low-Field-Side Injection:
- Injectors on outboard mid-plane
- High $R_{inj} \rightarrow$ low V_{LHI}
- Dynamic shape \rightarrow strong V_{IND}

High-Field-Side Injection:
- Injectors in lower divertor
- Low $R_{inj} \rightarrow$ strong V_{LHI}
- Static shape \rightarrow minimal V_{IND}

Confinement Properties Set the Current Drive Scaling for HFS Injection

• Ohmic and stochastic confinement scalings predict non-linear $I_p - V_{LHI}$ relationships

$$V_{LHI} = I_p R_p \rightarrow T_e^{3/2}$$

• Experiment shows I_p proportional to V_{LHI}
 – Suggests fixed $\langle \eta \rangle$

• However, may not be fully representative
 – Experiment conducted at low $B_t \sim 0.045$ T
 – Short I_p flat top
 – n_e was not controlled
T_e Profile Structure Suggests Varying Degrees of Current Stream Structure in the Plasma Edge

- In LFS discharges, profile structure depends on attachment of plasma to the injectors
 - Peaked when attached
 - Hollow when detached

- In HFS discharges, profile structure depends upon the level of B_t
 - Peaked at max B_t
 - Hollow at reduced B_t
Operation at Max B_t is Critical to Scale LHI to Larger Facilities

- HFS injection more difficult at max B_t
- Increased B_t causes injector streams to pass closer to the other injector
- Cathode spots are more likely to occur early in the discharge at max B_t

Current streams in an unrelaxed discharge

Cathode spots on the outside of the injector

G.M. Bodner, APS-DPP 2018
LFS to HFS Injection Handoff Enables Routine Max B_t Operation

- Additive nature of helicity means HI systems can be combined

- Startup with LFS injection at max B_t
 - Eases relaxation requirements
 - Favorable geometry for divertor injectors

- Handoff to HFS injection when presented with full size plasma
 - Mitigates PMI issues

- Proof of principle of the handoff technique
• Core T_e increases during the HFS drive phase to > 100 eV

• Trade-off between n_e, T_e, and I_p; can operate at higher n_e but requires more input power

• Similar results have been observed with HFS injection-only discharges at max B_t
Abrupt Transition in MHD Behavior During HFS Injection

- Large-amplitude, low freq. in early phase
 - Large scale n=1 at 20-80 kHz
 - Line-tied kink of current streams
- Reduction in low frequency activity later in the discharge
 - Low MHD: up to 50% more I_p
 - Interpreted as kink stabilization
- Mechanisms behind this transition are unclear; under investigation

G.M. Bodner, APS-DPP 2018

J.M. Perry et al 2018 Nucl. Fusion 58 096002
• HFS injection has been used to create discharges driven purely by helicity injection

• LFS to HFS startup successfully implemented to routinely create high I_p discharges at max B_t

• Peaked T_e, n_e, and p_e profiles observed in purely helicity driven plasmas

• T_e profile suggests varying degrees of current stream thermalization in the plasma edge

• Operating regime with reduced $n=1$ activity; increased current drive efficiency discovered