V_{eff} Scaling of T_e and n_e Measurements During Local Helicity Injection on the Pegasus Toroidal Experiment

G.M. Bodner
M.W. Bongard, R.J. Fonck, J.M. Perry, J.A. Reusch, C. Rodriguez Sanchez

59th Annual APS-DPP Meeting
Milwaukee, WI
October 26th, 2017
Introduction Slide (Summary and Motivation)

- Pegasus Overview
- Layout of the Pegasus Thomson Beam Line
- Thomson Spectrometer Overview

Confinement During Non-Inductive LHI

- Comparisons between Outboard and Inboard LHI
- LFS LHI Time Evolution
- HFS LHI Time Evolution

Introduction to V_{LHI} Experiment

- Te and ne at Different V_{LHI} Level
- Time Evolution at One V_{LHI} Level
- Initial High Bt Results

Installation of 24-Channel Fiber Mount

- MHD Comparisons at 50%
- MHD Comparisons at 50%
- Density Scaling at 50%

Introduction to High TF Operations

- Full TF Time Evolution
- Summary and Conclusions

12:1 scale Panel size: 8’ x 4’

Populate with section titles, final slide titles

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Thomson Scattering Diagnostic System Deployed to Investigate T_e and n_e During Local Helicity Injection

- Collection of T_e and n_e profiles is a critical plasma measurement
 - Equilibrium/Stability
 - Transport and confinement

- Understanding electron confinement during LHI necessary for scalability to MA-class devices.

- New fiber mount deployed to view 24 spatial locations simultaneously

- T_e and n_e profiles collected for multiple injector geometries

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Local Helicity Injection Provides Non-Inductive Startup at Low \(A \)

- Edge current extracted from small, modular injectors
- Relax to tokamak-like state via helicity-conserving instabilities
- Used routinely for startup on PEGASUS

Pegasus Parameters

- \(A \): 1.15 – 1.3
- \(R \) [m]: 0.2 – 0.45
- \(I_p \) [MA]: \(\leq 0.25 \)
- \(B_T \) [T]: \(< 0.15 \)
- \(\Delta t_{shot} \) [s]: \(\leq 0.025 \)

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Layout of the Pegasus Thomson Scattering Diagnostic

Nd:YAG laser

Turning mirror & beam line lens

Laser Hutch

Turning Box

Collection region

Pegasus vacuum vessel

3.4 m

2.3 m

20 m to spectrometer

Volume Phase Holographic (VPH) Grating

Fast Shutter

Image-Intensified CCD (ICCD) camera

3.2 m to Beam dump

1.2 m

Fiber bundle entrance slit

D.J. Schlossberg et al., Journal of Instrumentation, 8, C11019 (2013)

New Fiber Mount Allows For Simultaneous Observation of 24 Spatial Channels

- Good reproducibility allows laser-off shots for background subtraction

- Background channels repurposed as additional data channels

- Previous configuration required moving fiber mounts to view plasma profile

*Figure shows 8 of 24 total fiber channels

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
• Local Helicity Injection (LHI) creates tokamak plasmas with high power edge current injection

• Physics encapsulated in hierarchy of models:
 1. Maximum I_p Limits1:

 Taylor Relaxation

 $I_p \leq I_{TL} \sim \left(\frac{I_{TP} I_{inj}}{W}\right)^{1/2}$

 Helicity Conservation

 $I_p \leq \frac{A_p}{2\pi R_0(\eta)} \left(\frac{A_{inj} B_{\phi,inj}}{\Psi} V_{inj} + V_{IND}\right)$

 2. 0-D Power Balance Model for $I_p(t)$:

 $I_p [V_{LHI} - V_{IR} + V_{IND}] = 0 ; \; I_p \leq I_{TL}$

 3. 3D Resistive MHD (NIMROD)

Projectations from 0-D Power Balance Model
Demonstrating Impact of T_e on LHI Performance

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Different Injector Geometries Emphasize Different Current Drive Mechanisms

- Low-Field-Side (LFS) injection:
 - Injectors near outboard midplane
 - Shape evolution $\Rightarrow V_{\text{IND}}$ dominates

- High-Field-Side (HFS) injection:
 - Injectors in lower divertor
 - Static shape $\Rightarrow V_{\text{LHI}}$ dominates

- Different current drive mechanisms may lead to different electron transport

\[I_p [V_{\text{LHI}} - V_{\text{IR}} + V_{\text{IND}}] = 0 \]

\[V_{\text{LHI}} = \frac{\frac{V_{\text{inj}} A_{\text{inj}} B_{\text{inj}}}{\Psi_{\text{TF}}} \cdot \frac{1}{R_{\text{inj}}}} \]
LFS LHI at High B_t Produces Peaked T_e Profiles with Core $T_e > 100$ eV, When Coupled to Injectors

- Peaked T_e profiles near comparable to Ohmic confinement

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Similarly HFS LHI at High B_t Observes Peaked T_e Profiles

$I_{TF} \sim 288\, \text{kA}$
- MHD transition characterized by rapid increase of I_p and n_e

- Thomson measurements indicate increase in n_e in the Reduced MHD regime

- Understanding the MHD transition may be necessary to access to higher I_p
- Core T_e largely unaffected by MHD transition
- Increased n_e leads to reduction in T_e
- T_e profiles differ from those at high B_t

$96987;97031$

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017

$I_{TF} \sim 144 \text{ kA}$
Increased T_e Can Be Observed in the Reduced MHD Regime With Reduced Neutral Fueling

- Neutral fueling changed by eliminating HFS gas puffing
- Edge T_e increases, resulting in hollow profile structure
- Extensive n_e scaling experiments planned for the near future

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
V_{LHI} Scaling Performed to Determine Effect of Input Power on T_e at Reduced B_t

- I_p scales roughly with V_{LHI}
- LHI-only discharges with static geometry and $I_{TF} \sim 86.4$ kA
- T_e and n_e profiles collected at three different levels of V_{LHI}

$V_{LHI} = \frac{V_{inj}A_{inj}B_{inj}}{\Psi_{TF}} \sim \frac{1}{R_{inj}}$

Static Geometry: $V_{IND}=0$

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Hollow T_e Profile Features Reinforced at Increased Input Power

- Anomally high T_e observed in plasma edge

I_p (kA) vs Time (ms)

$I_{TF} \sim 86.4$ kA

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Time Evolution at Constant V_{LHI} Shows T_e Profiles Transition from Flat to Hollow with Peaked n_e Profiles

T_e (eV) vs. Major Radius (cm)

n_e ($\times 10^{19}$ m$^{-3}$) vs. Major Radius (cm)

$I_{TF} \sim 86.4$ kA

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Poor T_e Confinement with Increased V_{LHI} and Reduced MHD Indicate B_t May Have Strongest Impact on T_e

- B_t scaling performed by changing toroidal field rod current, I_{TF}
 - Thomson measurements taken at three different TF rod currents
 - Peaked T_e observed at $I_{TF} \sim 288$ kA

- Discharges at each TF level had comparable I_p and n_e
 - $I_p \sim 100$ kA, $n_e \sim 1 \times 10^{19}$ m$^{-3}$

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
T_e Profile Structure Has a Strong Dependence on B_t

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Summary and Conclusions

• Thomson measurements at low B_t indicate hollow T_e profiles with anomalously high edge T_e.

• At high B_t, T_e profiles are peaked, near comparable to Ohmic-driven plasmas.

• Extensive High B_t operations planned for the future to further investigate confinement during HFS LHI.

G.M. Bodner, APS-DPP, Milwaukee, WI, Oct. 26, 2017
Reprints

Reprints of this and other PEGASUS presentations are available online at

http://pegasus.ep.wisc.edu/Technical_Reports