Physics of the Current Injection Process in Localized Helicity Injection

Edward Thomas Hinson

Pegasus Toroidal Experiment
University of Wisconsin – Madison

57th American Physical Society Division of Plasma Physics Meeting
Nov 2015
Local Helicity Injection (LHI) is a Promising Non-Solenoidal Tokamak Startup Technique

- Unstable current streams form tokamak-like state via Taylor relaxation
- Appears scalable to MA-class startup

E.T. Hinson, APS-DPP 2015
The simple model for helicity injection posits two I_p limits related to the injector circuit:

- **Helicity balance** limit depends on injector voltage V_{inj}:

 $$I_p \leq \frac{A_p}{2\pi R_0 \langle \eta \rangle} \left(V_{\text{ind}} + \frac{A_{\text{INJ}} B_{\phi,\text{inj}}}{\Psi_T} V_{\text{inj}} \right)$$

- **Taylor relaxation** limit depends on current I_{inj}:

 $$I_p \leq f(\varepsilon, \delta, \kappa) \sqrt{\frac{\kappa A_p I_{\text{TTR}} I_{\text{inj}}}{2\pi R_0 w}}$$

Injector impedance describes the relationship between I_{inj} and V_{inj}:

- Determined by plasma physics
- Determines feasibility and power requirements for scaling up LHI
Edge Current Injection is Straightforward Conceptually

- Injection in Pegasus accomplished with arc plasma guns

- 2-stage circuit: bias and arc circuits “daisy chained”

- Voltage (~1 kV) is determined by plasma physics
Double Layer Sheath: A Promising Framework for Understanding Injector Impedance

- Two space-charged layers “sandwiched” to each other

- Width of space charge set by plasma, order λ_{De}

$$J = \frac{4}{9} 1.865 \varepsilon_0 \left(1 + \sqrt{\frac{m_e}{m_i}}\right) \left(\frac{2e}{m_e}\right)^{\frac{1}{2}} \frac{V^2}{\ell_{DL}^2}$$

$$\ell_{DL}^2 = (\lambda_{De} \cdot \chi)^2 \Rightarrow I \sim n_{DL} V^\frac{3}{2}$$
I-V Characteristics Show 2 Regimes

- Typical I-V relationship shows two power law regimes, $I_{\text{inj}} \sim V_{\text{inj}}^{3/2}, V_{\text{inj}}^{1/2}$
Injector Impedance Has Fueling Dependence

- Deuterium gas flow rate into the source plasma scanned
- $I_{\text{inj}}/V^{1/2}$ increases with gas flow

![Graph showing I_{inj} vs. V_{inj} with D_2 flow rate as a parameter.]

V_{inj} [V] vs. I_{inj} [A]

D_2 Flow Rate [Torr-L/s]
- 2700
- 2300
- 2000
- 1900
- 1600
- 1400
- 720

$I_{\text{inj}}/V^{1/2}$ vs. D_2 Flow Rate [Torr-L/s]

V_{inj} [V] vs. I_{inj} [A]

E.T. Hinson, APS-DPP 2015
1: Expanding Double Layer Yields $I \sim n_{DL} V^{1/2}$

- Simulations* find when $V_{DL}/T_e >> 1$:

$$\ell_{DL} \sim \lambda_{De} \sqrt{V_{DL}/T_e}$$

Expected I-V relation is:

$$I_{inj} \sim n_{arc} \sqrt{V_{inj}}$$

E.T. Hinson, APS-DPP 2015
2: Beam Neutralization Yields $I_{inj} \sim n_{edge} V_{inj}^{1/2}$

- Electron beam propagation requires drift space ions neutralize electrons: $n_b \leq n_i$

- Typical beam values imply beam density $n_b \sim 10^{18} m^{-3}$ - comparable to edge density n_{edge}!

- Assume drift space has same density as edge: $n_i \approx n_{edge}$

\[
I_{inj} = n_b e v_e A_{inj} \leq n_i e \sqrt{\frac{2eV_{inj}}{m_e} A_{inj}} \sim n_{edge} \sqrt{V_{inj}}
\]

\[
I_{inj} \sim n_{edge} \sqrt{V_{inj}}
\]
Minimum of both limits is applicable:

Sheath expansion: \[I_{inj} \sim n_{arc} \sqrt{V_{inj}} \]

Quasineutrality: \[I_{inj} \sim n_{edge} \sqrt{V_{inj}} \]

Impedance Model:
\[I_{inj} = \text{Min}[n_{edge}, \beta n_{arc}] e^{\frac{2eV_{inj}}{m_e}} A_{inj} \]
Ohmic Plasmas Created to Test Model via Measured n_{edge}, n_{arc}

n_{edge}:
- Measured with Langmuir probe behind injector limiter
- Controlled with edge fueling

n_{arc}:
- Measured via Stark broadening of H-δ in arc channel
- Controlled with injector fueling

E.T. Hinson, APS-DPP 2015
• Arc density n_{arc} scanned
• Entire scan consistent with sheath expansion: $n_b \sim \beta n_{\text{arc}}$
 where $\beta = 1/850$

$$\beta n_{\text{arc}}$$

$$n_{\text{edge}}$$

$\triangle n_{\text{edge}}$

$\bullet n_b$

$n_b = n_{\text{arc}}/850$

Density $[\text{m}^{-3}]$

12×10^{18}

10^{15}

10^{12}

10^{9}

10^{6}

10^{3}

10^{0}

0.1 2 4 6 8 10×10^{21}

$n_{\text{arc}} [\text{m}^{-3}]$
• Increasing n_b at low n_{edge}

• Saturation at $n_b = n_{\text{arc}} / 850$
Interferometer Line-Averaged Density Expected to Trend with n_{edge}

- Interferometer captures linear behavior at low n_{edge}
- Saturation at $n_b = n_{\text{arc}}/850$

\[n_b \approx 3 \times 10^{21} \text{ m}^{-3} \]

\[n_{\text{arc}} \approx 3 \times 10^{21} \text{ m}^{-3} \]
NIMROD Simulations Show Reconnecting Streams in Edge

- NIMROD shows I_p growth via intermittent reconnection
 - Coherent current streams exist in edge throughout discharge
 - Adjacent passes reconnect to inject rings into core

- Poloidal flux buildup and I_p multiplication results

E.T. Hinson, APS-DPP 2015
Connection between Loop Creation, Bursts

- Bursts associated with coherent stream, current buildup

- What could MHD say about existence of beam in edge?
Hypothesis: dB/dt on PDXs Comes from ‘Whirling’ (Infinite) Line Source

- Assume remote, circular stream rotation

\[\Delta B = \frac{\mu_0 I}{2\pi r_1} - \frac{\mu_0 I}{2\pi r_2} = \frac{\mu_0 I}{2\pi r_1 r_2} (\vec{r}_1 - \vec{r}_2) \approx \frac{\mu_0 I}{2\pi r^2} (r_1 - r_2) \cos(\theta) \]

\[\frac{dB}{dt} \approx \frac{\mu_0 I}{2\pi} \left(\frac{r_1 - r_2}{r^2} \right) \cos(\theta) \]

\[\frac{dB}{dt} \approx \frac{\mu_0 I}{2\pi} 2\pi f \cos(2\pi ft - \arctan(Z / R)) \]

\[\frac{dB}{dt} \approx \frac{\mu_0 I}{2\pi} \frac{2\pi ft - \arctan(Z / R)}{R^2 + Z^2} \]

- dB/dt structure looks like ‘tumbling’ dipole

- However, probes measure d(B_z)/dt, not total dB/dt

E.T. Hinson, APS-DPP 2015
Hypothesis: dB/dt on PDXs Comes from ‘Whirling’ (Infinite) Line Source

- Hypothesized dB_z/dt:

\[
\frac{dB_{z,\text{probe}}}{dt} = \frac{\mu_0 I r_{\text{motion}} f \cos[2\pi ft - 2\arctan\left(\frac{z_{\text{probe}} - Z_{\text{stream}}}{r_{\text{probe}} - R_{\text{stream}}}\right)]}{\left(\frac{z_{\text{probe}} - Z_{\text{stream}}}{r_{\text{probe}} - R_{\text{stream}}}\right)^2 + \left(\frac{z_{\text{probe}} - Z_{\text{stream}}}{r_{\text{probe}} - R_{\text{stream}}}\right)^2}
\]

- 4-lobed, fall-off is \(\frac{1}{r^2}\)
Fit to Data Looks Promising

\[\frac{dB_{z,\text{probe}}}{dt} = \mu_0 I_{\text{motion}} f \cos(2\pi ft - 2 \arctan\left[\frac{z_{\text{probe}} - Z_{\text{stream}}}{r_{\text{probe}} - R_{\text{stream}}} \right]) \]

\[\left(z_{\text{probe}} - Z_{\text{stream}} \right)^2 + \left(r_{\text{probe}} - R_{\text{stream}} \right)^2 \]

<table>
<thead>
<tr>
<th>(R_{\text{stream}})</th>
<th>(Z_{\text{stream}})</th>
<th>(r_{\text{motion}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58m</td>
<td>-0.08m</td>
<td>10cm</td>
</tr>
</tbody>
</table>

E.T. Hinson, APS-DPP 2015
Model Inverts for $R(t)$, $Z(t)$

- Phase difference of 2 signals is
 \[
 \Delta \varphi = 2 \arctan \left(\frac{z_{\text{probe}1} - Z_{\text{stream}}}{r_{\text{probe}1} - R_{\text{stream}}} \right) - 2 \arctan \left(\frac{z_{\text{probe}2} - Z_{\text{stream}}}{r_{\text{probe}2} - R_{\text{stream}}} \right)
 \]

- The ratio of amplitudes of 2 signals
 \[
 T = \frac{\left(z_{\text{probe}2} - Z_{\text{stream}} \right)^2 + \left(r_{\text{probe}2} - R_{\text{stream}} \right)^2}{\left(z_{\text{probe}1} - Z_{\text{stream}} \right)^2 + \left(r_{\text{probe}1} - R_{\text{stream}} \right)^2}
 \]

- 2 equations, 2 unknown R, Z of stream:
 \[
 R_{\text{stream}} = r_p \pm \frac{\sqrt{T \Delta z \sin(\Delta \varphi / 2)}}{T \pm 2 \cos(\Delta \varphi / 2) \sqrt{T} + 1}
 \]
 \[
 Z_{\text{stream}} = \frac{z_2 - T \cos(\Delta \varphi)(z_1 + z_2) + z_1 T^2 \pm \sqrt{T \left(T - 1 \right) \Delta z \cos(\Delta \varphi / 2)}}{T^2 - 2 \cos(\Delta \varphi) T + 1}
 \]
\(R_{\text{stream}}(t), Z_{\text{stream}}(t) \) is Output

- Combine with uncertainty to yield small R,Z region
- Signal origin appears localized

\[\sigma_T \]

\[\sigma_{\Delta \phi} \]

\[R \]

\[Z \]
Managing Plasma-Material Interaction is a Formidable Challenge

- Injector requirements include
 - $V_{\text{inj}} > 1 \text{ kV}$
 - Large $A_{\text{inj}}, J_{\text{inj}}$
 - $\Delta t_{\text{pulse}} \sim 10\text{-}100 \text{ ms}$
 - Minimal PMI
 - ...all adjacent to tokamak LCFS

- Significant evolution of design to meet physics challenges
 - $\sim 3x$ improvement in $V_{\text{inj}}, \Delta t_{\text{pulse}}$

E.T. Hinson, APS-DPP 2015
Spots Move and Interact with Injector Structures

- Breakdown in the presence of plasma occurs $\sim 10^5$ V/cm
 - At $10^{18}/m^3$, 10eV plasma, this is $\sim 1kV$

- Cathode spots, when ignited, roam cathode surface

- Interaction with insulators cases outgassing, damage

- Motion in field can potentially be controlled
Cathode Spot Motion in a Field

- Spot motion occurs in $-j \times B$ direction, subject to angular displacement, ϕ
Barengoltz* Provides a Model for Motion in Arbitrary B Field

- Based on return currents seen in simulations
- New spots arise due to preferential bombardment by returning electrons
- ‘Small spots’ have \(r << R \), ‘Large spots’ have \(r = R \)

\[
\phi \approx \arctan \left(Q \sin(\theta_B) \right)
\]

\[
\frac{1}{2} \leq Q \leq 1
\]

*Zh. Tekh. Fiz. 68, 60–64 (June 1998)
Conical Frustum Design Implemented to Mitigate Cathode Spot Damage

- Conical shape used to induce inward motion of spots
- Self-magnetic field in Pegasus pushes spots outward radially
- Numerical approach necessary to balance these tendencies

Heuristics are rendered as:

$$\vec{r}' = q\left(\hat{b} - \hat{n}(\hat{n} \cdot \hat{b})\right) + \hat{n} \times \hat{b}$$

E.T. Hinson, APS-DPP 2015
Motion ALWAYS Outward for Concave Shapes

60834
I_{inj}=1900A

E.T. Hinson, APS-DPP 2015
Convex Shape MIGHT Have Inward Motion

- The sign of \(\ddot{r}' = \varrho \left(\hat{b} - \hat{n} (\hat{n} \cdot \hat{b}) \right) + \hat{n} \times \hat{b} \) gives spot radial motion.

Case 1: \(\varrho = \frac{1}{2}

Case 2: \(\varrho = 1

E.T. Hinson, APS-DPP 2015
Motion is Inward for Convex Cathodes in a Certain Interval

E.T. Hinson, APS-DPP 2015
• Limits to max I_p in LHI depend on V_{INJ}, I_{INJ}, and are related by

$$I_{inj} = \min[n_{edge}, \beta n_{arc}] e \sqrt{\frac{2e}{m_e}} \sqrt{V_{inj}} A_{inj}$$

• Initial model to understand MHD was created and suggests an oscillating, coherent beam

• Injector design improvements are allowing access to higher power operations