Microstability Properties of the Local Minimum $|B|$ Regime in Pegasus

David R. Smith
M. W. Bongard, R. J. Fonck, J. A. Reusch, and A. T. Rhodes

59th APS-DPP
Milwaukee, WI
26 October 2017
A local **minimum** \(|B| \) **region**, or “magnetic well,” was recently observed in the **low-aspect-ratio Pegasus device** in high-\(\beta \) scenarios with strong edge current peaking [1]. The \(\nabla B \) **reversal** within the magnetic well alters magnetic drifts and particle orbits associated with instabilities. Here, we report on the microstability properties of the magnetic well region with calculations from the **GENE gyrokinetic code** [2].

[2] F. Jenko and the GENE Development Team,
http://genecode.org/
Outline

• Background
 – Reduced neoclassical transport with ST paramagnetism
 – Drift wave stabilization and improved fast-ion confinement with diamagnetic well

• Pegasus minimum $|B|$ regime
 – $\beta_t \approx 100\%$ operation with HFS local helicity injection
 – Diamagnetic well with net-paramagnetism

• Microstability properties of Pegasus min-$|B|$ regime
 – GENE gyrokinetic simulations
 – Two tearing-parity modes with on- and off-midplane peaking
 – Particle, ion heat, and electron heat transport

• Discussion, plans, and summary
 – Probe measurements
Enhanced confinement with ST paramagnetism

- STs are strongly paramagnetic due to large helical pitch and J_p
 - $\beta_p \sim 0.3$ (< 1 is paramagnetic)

- Omnipotence in bad curv. region from paramagnetic $|B| \approx |B|(\psi)$
 - Reduced neoclassical transport due to vanishing banana orbit width

Y-K. M. Peng and D. Strickler, NF 1986

D. R. Smith, APS-DPP 2017
Enhanced confinement with diamagnetic $|B|$ well

- At high β, plasma digs a diamagnetic $|B|$ well
 - Gyromotion is diamagnetic
- Drift wave stabilization
 - ∇B reversal in magnetic drift
- Improved fast ion confinement
 - Expanded parameter space for:
 - fast ion trapping
 - co-and counter- fast ion confinement
- Reduced neoclassical transport
 - Smaller trapped particle fraction

D. R. Smith, APS-DPP 2017

J. Rome and Y-K. M. Peng, NF 1979
Drift wave stabilization with ∇B reversal

Toroidal ITG dispersion relation*

\[
\omega^2 \frac{T_i}{T_e} - 2\omega_d \omega + \frac{2\omega_d \omega_{*T}}{\text{key term}} - 7\omega_d^2 = 0
\]

with $\omega_d = \vec{k} \cdot \vec{v}_d$, $\vec{v}_d = \frac{v_d^2 + \mu B \nabla B}{\Omega} \frac{B^2}{B^2}$, and $\omega_{*T} = -k_\theta \rho_i \frac{v_{ti}}{L_T}$.

Typically $B(R) \propto 1/R$ with $\text{sgn}(\omega_d) = \text{sgn}(\omega_{*T})$ on LFS. ITG instability ($\text{Im}(\omega) > 0$) exists if ∇T_i (L_T) is sufficiently large (small).

∇B reversal on LFS gives $\text{sgn}(\omega_d) = -\text{sgn}(\omega_{*T})$ and all modes are strictly stable.

* neglect k_\parallel, assume $\omega \gg \omega_d$, and let $\nabla n \to 0$
HFS LHI enables $\beta_t \approx 100\%$ regime in Pegasus

- Enhanced stability at low A (1.21) and high κ (2.6) in Pegasus
- Local helicity injection (LHI) with high field side (HFS) injectors
 - Reconnection ion heating ($T_{i0} > T_{e0}$)
 - Suppression of low-m tearing modes
 - Edge current peaking with low l_i (0.22)
- Kinetic-constrained equilibria

D.J. Schlossberg et al., PRL 2017
D.J. Schlossberg, Ph.D. Thesis 2017

Edge current peaking
High β_t at high aI_p/B_{t0} (I_N) in Pegasus

- Sykes-Troyon scaling
 - $\beta_{t,max} \propto aI_p/B_{t0}$
 - Normalized current: $I_N \equiv aI_p/B_{t0}$
 - Normalized beta: $\beta_N \equiv \beta_{t,max}/I_N$
 - Higher β_N accessible at lower A and/or higher κ

- I_{TF} ramp-down to access high I_N
 - $I_N \propto I_p/I_{TF}$

D.J. Schlossberg et al., PRL 2017
D.J. Schlossberg, Ph.D. Thesis 2017

D. R. Smith, APS-DPP 2017
Diamagnetic well with net-paramagnetism in Pegasus

- Strong ST paramagnetism diminished by diamagnetic well
 - $\beta_p = 0.45$
- Magnetic well depth increases for higher β_p or lower B_t

D.J. Schlossberg et al., PRL 2017
D.J. Schlossberg, Ph.D. Thesis 2017

D. R. Smith, APS-DPP 2017
Gyrokinetic simulations with \textit{GENE}

- \textit{GENE} evolves gyrokinetic equations in 5-dimensional phase space
 - Electromagnetic with A_\parallel and/or B_\parallel
 - Local flux tube or nonlocal profiles
 - Linear/nonlinear initial value solver or linear eigenvalue solver (subdominant modes)
 - F. Jenko \textit{et al}, http://genecode.org/

Example \textit{GENE} simulation of finite-β TEM turbulence at $A = 5.5$

M. J. Pueschel and F. Jenko, PoP 2010
Simulation parameters for Pegasus min-\(|B|\) regime

- **Flux tube**
 - \(\Psi_N = 0.6\) @ max \(\nabla B\) reversal
 - \(q = 3.5\) and \(\hat{s} = 0.55\)
- **Physics model**
 - \(\phi\) and \(A_{||}\)
 - \(m_e/m_d = 1/100\) (heavy electrons)
 - \(\nu_i^* = 0.07\)
 - \(\beta_e = 27\%\)
- **Species’ profiles**
 - \(a/L_n = a/L_{Ti} = a/L_{Te} = 3.15\)
 - \(T_e = T_i\)

D. R. Smith, APS-DPP 2017
Linear eigenvalue solver indicates tearing-parity electron modes at $k_y \rho_i \sim 0.1$

Plots by GENE diagnostic tool
Preliminary nonlinear simulations indicate dominant electron electromagnetic heat flux

Longer run needed

Volume-averaged fluxes normalized to ion gyroBohm units

Large saturation value for electromagnetic component of electron heat flux $\approx O\left(10 \times Q_{i,gb}\right)$

Plots by GENE diagnostic tool

D. R. Smith, APS-DPP 2017
Contour plots show microtearing-like eddies in ϕ with narrow Δx and extended Δy

$L_x = 171\rho_i$ and $\Delta x/\rho_i = 0.67$
$L_y = 628\rho_i$ and $k_y\rho_i = 0.01-0.32$

likely insufficient res.

Plots by GENE diagnostic tool

D. R. Smith, APS-DPP 2017
Particle and heat flux spectra show strong electromagnetic components at $k_y\rho_i \sim 0.1$

Plots by GENE diagnostic tool

D. R. Smith, APS-DPP 2017
Particle flux due to low-k electrostatic component and ion magnetic flutter

Plots by GENE diagnostic tool

Cross-phase between perturbed fields

D. R. Smith, APS-DPP 2017
Cross-phase and heat flux spectra indicate two modes are active.

- Both tearing parity and propagate in electron direction
- One mode generates particle and ion heat flux; the other mode generates electron heat flux
Modified equilibrium with monotonic $|B|$ shows larger growth rates

Slight RS and less edge current (cf. pg. 7)

Monotonic $|B|$ and $|B|'<0$ (cf. pg. 11)

Larger growth rates for unstable electron modes (cf. pg. 12)

D. R. Smith, APS-DPP 2017
Discussion and plans

- Assess spectra, correlations, and mode structure of electric and magnetic fluctuations with probes
 - Core access
 - Configure for field-aligned or off-midplane measurements

D. R. Smith, APS-DPP 2017
Summary

- ST paramagnetism and diamagnetic wells provide mechanisms for improved confinement
 - Drift wave stabilization with ∇B reversal
- Pegasus $\beta_t \approx 100\%$ regime exhibits diamagnetic well while remaining net-paramagnetic
 - Edge current peaking with HFS local helicity injection
 - D.J. Schlossberg et al., PRL 2017; D.J. Schlossberg, Ph.D. Thesis 2017
- GENE gyrokinetic simulations at min-$|B|$ region identify two tearing-parity modes at $k_y\rho_i \sim 0.1$
 - Tearing-parity modes linked to particle, ion, and electron heat flux
 - Subdominant mode with off-midplane peak
Reprints

Reprints of this and other PEGASUS presentations are available online at

http://pegasus.ep.wisc.edu/Technical_Reports