Abstract

• Use Thomson scattering to diagnose point-source helicity-driven plasmas on the PEGASUS Toroidal Experiment:
 – Characterize dominant particle transport mechanisms
 – Quantify helicity dissipation sources
 – Expect $<T_e> = 50 – 500$ eV, $n_e > 10^{18}$ m$^{-3}$

• Design, test, and deploy a novel diagnostic system:
 – 2 J, 8 ns Nd:YAG laser operating in the visible, focused to ≤ 3 mm dia.
 – Custom collection optics views $>70\%$ of plasma radius, 1.4 cm resolution
 – High quantum efficiency, fast-gated CCD cameras detect signal

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
PEGASUS is a compact ultralow-A ST

Major research thrusts include:
- Non-inductive startup and sustainment
- Tokamak physics in small aspect ratio:
 - High-I_N, high-β operating regimes
 - ELM-like edge MHD activity

Experimental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Achieved</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.15 – 1.3</td>
<td>1.12 – 1.3</td>
</tr>
<tr>
<td>$R(m)$</td>
<td>0.2 – 0.45</td>
<td>0.2 – 0.45</td>
</tr>
<tr>
<td>I_p (MA)</td>
<td>\leq .21</td>
<td>\leq 0.30</td>
</tr>
<tr>
<td>I_N (MA/m-T)</td>
<td>6 – 12</td>
<td>6 – 20</td>
</tr>
<tr>
<td>R_{B_t} (T-m)</td>
<td>\leq 0.06</td>
<td>\leq 0.1</td>
</tr>
<tr>
<td>κ</td>
<td>1.4 – 3.7</td>
<td>1.4 – 3.7</td>
</tr>
<tr>
<td>τ_{shot} (s)</td>
<td>\leq 0.025</td>
<td>\leq 0.05</td>
</tr>
<tr>
<td>β_t (%)</td>
<td>\leq 25</td>
<td>> 40</td>
</tr>
<tr>
<td>P_{HHFW} (MW)</td>
<td>0.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Thomson scattering will aid estimation of resistive helicity dissipation

Total helicity in a tokamak geometry: \(K = \int_V (A + A_{vac}) \cdot (B - B_{vac}) \, d^3x \)

\[
\frac{dK}{dt} = -2 \int_V \eta J \cdot B \, d^3x - 2 \frac{\partial \psi}{\partial t} \Psi - 2 \int_A \Phi B \cdot ds
\]

- **Resistive Helicity Dissipation**
 - \(E = \eta J \rightarrow \eta \approx \frac{\pi e^2 m^{1/2}}{(4\pi \epsilon_0)^2 (kT_e)^{3/2}} \ln(12\pi n\lambda_D^3) \) (Spitzer)
 - Use Thomson scattering to quantify \(T_e \) and \(n_e \)

- **These low-density non-solenoidal plasmas present the most challenging conditions for measuring Thomson scattering**

 - **AC Helicity Injection:** \(\dot{K}_{AC} = -2 \frac{\partial \psi}{\partial t} \Psi = 2V_{\text{loop}} \Psi \)
 - **DC Helicity Injection:** \(\dot{K}_{DC} = -2 \int_A \Phi B \cdot ds = 2V_{\text{inj}} B_{\perp} A_{\text{inj}} \)

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
High-β, high I_p/I_{TF} scenarios will be characterized with MPTS

- Using helicity startup, Pegasus can access $I_N > 5$ at $I_p \sim 0.2$ MA
- As facilities are upgraded, expect to challenge the Troyon limit
- Explore confinement and temperature distributions in these regimes unique to Pegasus
Thomson scattering occurs when incident EM radiation excites free electrons

- "Thomson scattering" = scattering of EM radiation from free electrons
 - assumes $h\nu \ll mc^2$
 - here, assume incoherent scattering ($k_{\text{inc}} \lambda_D \gg 1$)

- Small scattering cross-section necessitates high-energy incident light (i.e. laser)
 \[
 \frac{dP}{d\Omega} = r_e^2 \sin^2 \phi c \varepsilon_0 |E_i|^2
 \]

- Collection lens & fiber bundles provide spatially resolved measurements

- Frequency bandwidth of the scattered light is proportional to T_e
 - Dispersion grating used to measure $\Delta\nu = c/\Delta\lambda$

- Small signal levels dictate high-sensitivity, fast detection electronics (ex. fast-gated image-intensified CCD)

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Scattered intensities $\sim \mu$Watt for low-density non-solenoidal plasmas

- Preliminary calculations yield scattered intensities of $\sim 4 \times 10^3$ total photons
 - Assumes incoherent, non-relativistic scattering
 - Assumes 2J, 7 ns Nd:YAG laser pulse
 - Assumes solid angle of ~ 0.01 ster per channel

- Since plasma durations in PEGASUS are ~ 30 ms, will only be able to measure one laser pulse

\[
I_{\text{det}} = \frac{E_{\text{laser}} \sigma n_e l \xi}{E_{\text{photon}} 4\pi} \\
= E_{\text{laser}} \left(\frac{\lambda_{\text{laser}}}{hc} \right) \sigma n_e l \frac{\xi}{4\pi} \\
\approx 2.66 \times 10^{11} \text{s}^2/\text{kg} \left(E_{\text{laser}} \cdot \lambda_{\text{laser}} \cdot n_e \cdot l \cdot \xi \right)
\]

Symbol:

Inputs:

- E_{laser}: Laser output energy (J)
- λ_i: Incident laser wavelength, λ_m (m)
- n_e: Electron density (m^{-3})
- l: Length of beam for one channel (m)
- ξ: Solid angle subtended by optics (ster)
- Pulse duration (s)

Output:

- I_{laser}: Number of laser photons incident/pulse
- I_{det}: Number of photons scattered/pulse
- Joules incident at primary wavelength
- Watts at primary wavelength

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Spectral range 532 – 592 nm for PEGASUS operating scenarios

- PEGASUS plasmas typically $10 \text{ eV} < T_e < 500 \text{ eV}$

- Use high dispersion VPH grating for low temperatures:
 - $532 \text{ nm} < \lambda_{\text{inc}} < 562 \text{ nm}$

- Use low dispersion VPH grating for high temperatures:
 - $532 \text{ nm} < \lambda_{\text{inc}} < 592 \text{ nm}$

- Signal levels will likely dictate $\Delta \lambda_{\text{inc}} \approx 4 \text{ nm}$ and 8 nm in the low and high temperature cases, respectively

- Predictions assume 90° average scattering angle with $\sim 10^{-2}$ solid angle
 - Relativistic effects evident in shift of central wavelength at $T_e = 1 \text{ keV}$

Based on: J. Sheffield, Plasma Phys., Vol 14, 783-791 (1972)

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Design method divides entire system into strongly coupled subassemblies

Subassemblies include:

1) Laser & enclosure
2) Beamline
3) Beam Dump
4) Collection Optics
5) Fiber Optics
6) Spectrometers
7) Control Code & SCRAM systems interface
8) Safety Overall
Multiple locations and methods used to reduce stray light

- Baffling along laser entrance tube
- Enclosed beam dump with baffles
- Sharp cut-on filter at spectrometer
- Grating alignment such that laser wavelength not incident on detector

Transmission through Spectrometer Entrance Filter

- Detection Active Area
- 532 nm spectral component
- To spectrometer

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
New Technology Reduces Cost & Complexity, Increases Performance

- **Image-Intensified CCD** chosen over APDs & fast digitizers
 - Significantly lower cost/channel
 - More compact form factor

- **Volume Phase Holographic (VPH) grating** chosen over bandpass filters
 - Dynamic spectral binning (with CCD)
 - Multiple channels per single grating

- **Frequency-doubled ND:YAG laser** chosen over Ruby laser
 - >2J at 532 nm possible
 - Visible light eases alignment
 - Excellent pointing stability allows tighter viewing volume

- **Beamline** optimized for simplicity and performance
 - Remotely actuated turning mirrors
 - Short beamline (<7 m)

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Novel spectrometer system employed – see Schoenbeck PP9.00007

- Custom achromat entrance lens
- Custom Volume Phase Holographic (VPH) diffraction gratings
- Image Intensified CCD (ICCD) detector
 - High quantum efficiency Gen 3 Intensifier
 - Fast gating capability down to 1.2 ns

RCWA Theoretical VPH Grating Efficiency, 2971 l/mm

- ~80%
- ~70%

Quantum Efficiency Curves for Gen 3 Image Intensifiers

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Initial System Designed for Expandability

- Individual channels correspond to close-packed fiber bundles
 - 1.5 cm radial resolution

- Initially, 4 data channels and 4 background monitors
 - Evaluate performance & plasma conditions and reconfigure as needed
 - Upon successful implementation, immediately begin expanding to 16 additional channels

- Scan array radially from shot-to-shot
 - Initially manual positioning
 - Expand to automated positioning across curved collection optics focal plane

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Laser specifications balanced between commercial availability and physics needs

- Identify tolerable limits due to physics needs and layout constraints
- Reliable, “turn-key” operation of laser desired
 - Nd:YAG used extensively for MPTS in plasmas
 - Operate flash lamps at steady 10 Hz to obtain maximum stability
- Implement design with consideration for possible future upgrades:
 - Additional spatial points
 - Multiple laser passes
 - Multiple time points per shot

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Determining factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Energy</td>
<td>≥ 2000 mJ</td>
<td>Scattered intensity fraction</td>
</tr>
<tr>
<td>Divergence</td>
<td>≤ 0.5 mrad</td>
<td>Desired spatial resolution, component damage thresholds</td>
</tr>
<tr>
<td>Pointing stability</td>
<td>≤ 50 µrad</td>
<td>Beam line</td>
</tr>
<tr>
<td>Pulse length</td>
<td>≥ 10 ns</td>
<td>Availability at desired power</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>≥ 10 Hz</td>
<td>Shot duration; availability</td>
</tr>
<tr>
<td>Jitter</td>
<td>≤ 500 ps</td>
<td>Time resolution</td>
</tr>
<tr>
<td>Beam diameter</td>
<td>8 – 15 mm</td>
<td>Availability</td>
</tr>
<tr>
<td>Polarization ratio</td>
<td>≥ 90%</td>
<td>Scattering dependence</td>
</tr>
<tr>
<td>Energy stability</td>
<td>± 2 %</td>
<td>Availability; repeatability; Intensity resolution</td>
</tr>
</tbody>
</table>
Beam energy and temporal pulse shape satisfy design requirements

- In-house calibration to ensure actual performance matches requirements
 - Test key laser properties (energy, pulse duration, pointing stability)
- Tests designed to mimic Pegasus shot cycle times and typical laser use
 - Single laser pulse every ~5 minutes

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Beam pointing stability and focusing will provide well-defined viewing volume

- Beam focused over ~9m path length onto a fast-framing CCD camera
 - Single plano-convex lens
 - 5.6 µm pixel size, 640x480 pixels
 - Attenuation > 10^{-6} needed to avoid camera saturation

- Pointing stability within 3 mm viewing area defined by collection optics

- Focused beam diameter within expected range

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Full-power beam diameter matches design specification

- Burn paper used to measure beam diameter at or near full-power
 - As beam is focused, unattenuated energy density becomes too large for burn paper
 - Use OD(1) high-power dielectric attenuator to reduce energy
- Unfocused beam diameter \(\sim 10 \) mm
- Diameter varies by <25\% over expected plasma radius
- Long-focal length lens allows convenient fine-tuning on optical table

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Several calibration methods under consideration

• Typical calibration methods span orders of magnitude in cross-section:
 – $\sigma_{\text{Rayleigh}} \approx 10^{-28}$ cm2/sr
 – $\sigma_{\text{Raman}} \approx 10^{-31}$ cm2/sr
 – $\sigma_{\text{Thomson}} \approx 10^{-33}$ cm2/sr

• Alternate methods include:
 – Comparison with existing PEGASUS diagnostics (ex. μwave interferometer)
 – Calibration source during machine vents (requiring vessel entrance)
 – Vacuum-compatible calibrated source, actuated to move along beamline (ex. MST mini integrating sphere)

NSTX Raman Calibration

Raman spectrum
Polychromator spectral bins
1048
1058
1064

λ (nm)

Rayleigh (a.u.)

0.0
0.2
0.4
0.6

Line integrated density (10^{19} m$^{-3}$)

0
1
2
3
4

15
20
25
30

Time (ms)

Typical PEGASUS plasma density

MST Insertable Integrating Sphere
Minature Integrating Sphere
Insertable Probe
Pumping Duct
Stepper Motor

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT
Precision timing provided by tunable delays

- Sub-nanosecond synchronization necessary between components
 - User requests laser pulse at given time t_0 during shot
 - PEGASUS control code issues Timing Sequence Module (TSM) pulse at $(t_0 - t_{\text{flash lamps}} - t_{\text{Q-switch}})$
 - Variable Sync Output on laser supply triggers camera acquisition

- Tuned to account for laser propagation time through beamline and electronics calculation time internal to camera
Bremsstrahlung emission a tolerable fraction of scattered signal

- Predicted Bremsstrahlung emission shows ~photons/nm collected
 - Short collection time (8ns)
 - Moderate single channel viewing volume (231 cm3)
- Actual Bremsstrahlung measured with scanning spectrometer
 - Small peaks within Thomson collection spectral range
- Choice of spectral collection region avoids D$_{\alpha}$ and N$_2$ lines

Predicted Bremsstrahlung Emission
per 8 ns pulse from 231 cm3 scattering volume

*following Karzas and Latter, Astrophys. J. (Supplement) 61961, 167

Measured Bremsstrahlung Spectrum
Initial data analysis routines being created and evaluated

- After system completion, data image will contain 4 scattering channels & 4 background channels
- All rows for one spatial point will be binned
- Selectable spectral binning (columns) based on plasma conditions
- Several possible fitting functions being evaluated for temperature estimation:

Selden:

\[S(e, \theta) = c(a)A^{-1}(e, \theta) \exp \left[-2aB(e, \theta) \right] \]

where:

\[A(e, \theta) = (1 + e)^3 \left[2(1 - \cos \theta)(1 + e) + e^2 \right]^{\frac{1}{2}} \]

\[B(e, \theta) = \left(1 + \frac{e^2}{2(1 - \cos \theta)(1 + e)} \right)^{\frac{1}{2}} - 1 \]

\[c(a) = \left(\frac{\pi}{a} \right)^{\frac{1}{2}} \left(1 - \frac{15}{16}a^{-1} + \frac{345}{512}a^{-2} + \ldots \right) \text{ when } a \gg 1 \]

and:

\[2a = \frac{m_ek^2}{kT_e}, \theta = \text{scattering angle}, c(a) = \text{normalizing constant} \]

\[\epsilon \equiv \left(\frac{\lambda_{ls}}{\lambda_i} \right) - 1 \text{ measures relative wavelength shift} \]

Sheffield:

\[P_{sc}(R, \lambda_s)d\lambda_s d\Omega = \frac{P_i r_0^2 d\Omega n_e Lc}{2\pi^2a_i \sin \left(\frac{\theta}{2} \right)} \]

\[\left\{ 1 - \frac{7 \Delta \lambda}{2 \lambda_i} + \frac{c^2 \Delta \lambda^3}{4a^2 \lambda_i^3 \sin^2 \left(\frac{\theta}{2} \right)} \right\} \]

\[\times \exp \left(-\frac{c^2 \Delta \lambda^2}{4a^2 \lambda_i^2 \sin^2 \left(\frac{\theta}{2} \right)} \right) \cdot d\lambda_s \]

where:

incident power \(P_i = \frac{cE_i^2}{8\pi} A \)

\[r_0 = \frac{e^2}{mc_0^2} = 2.82 \times 10^{-13} \text{ cm} \]

\(\lambda_s = \lambda_i + \Delta \lambda \)

Summary

- A novel Thomson scattering diagnostic is being installed on the PEGASUS Toroidal Experiment
- Laser characterization shows promising performance
- Spectrometer assembly and characterization underway
- After installation and calibration, system will be used:
 - As a routine density and temperature diagnostic
 - To investigate dominant confinement mechanisms in point-source helicity-driven plasmas
 - To quantify sources of helicity dissipation
Future directions

- Finish characterizing collection lens and detector components
- Assemble spectrometers
- Install laser, collection optics, fiber optics, and spectrometer rack in experimental area
- Perform system-wide calibration
- Finish creating and evaluating analysis routines
- Investigate physical phenomena in both higher-density (10^{19} m$^{-3}$) Ohmic plasmas and lower-density non-solenoidal plasmas
Please leave your name, affiliation, and e-mail address:

Or visit: http://pegasus.ep.wisc.edu/Technical_Reports/Conferences.htm

D.J. Schlossberg, APS-DPP 2011 Meeting, Salt Lake City, UT